Skip to main content
\(\require{cancel}\newcommand{\nin}{} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

ChapterReferences

Textbooks

[1]
  
Anderson, J.W. Hyperbolic Geometry, 2nd Ed. Springer, London, 2005.
[2]
  
Boas, R.P. Invitation to Complex Analysis. Random House, New York, 1987.
[3]
  
Coxeter, H.S.M. Introduction to Geometry, 2nd Ed. Wiley, New York, 1961.
[4]
  
Heath, T.L. The Thirteen Books of Euclid's Elements, 2nd Ed. Dover, New York, 1956.
[5]
  
Henle, M. Modern Geometries: The Analytic Approach. Prentice Hall, New Jersey, 1997.
[6]
  
Hilbert, D., and H. Cohn-Vossen, Geometry and the Imagination. AMS Chelsea Publishing, Rhode Island, 1952.
[7]
  
Jennings, G.A. Modern Geometry with Applications. Springer, 1998.
[8]
  
Schwerdtfeger, H. Geometry of Complex Numbers. Dover, New York, 1979.
[9]
  
Sieradski, A.J. An Introduction to Topology and Homotopy. PWS-KENT Publishing Company, Boston, 1992.
[10]
  
Stillwell, J. Geometry on Surfaces. Springer, New York, 1992.
[11]
  
Thurston, W.P. Three-Dimensional Geometry and Topology, Vol. I. Princeton, New Jersey, 1997.
[12]
  
Weeks, J.R.The Shape of Space, 2nd Ed.. Dekker, New York, 2002.

Other Books

[13]
  
Gray J., ed. The Symbolic Universe: Geometry and Physics 1890-1930. Ofxord University Press, New York, 1999.
[14]
  
Hogan, C.J. The Little Book of the Big Bang. Copernicus Springer-Verlag, New York, 1998.
[15]
  
Rucker, R. Geometry, Relativity and the 4th Dimension. Dover, New York, 1977.

Articles

[16]
  
Adams, C. and J. Shapiro. The Shape of the Universe: Ten Possibilities. American Scientist, Sept - Oct 2001, 89, 443–453.
[17]
  
Ade, P. A. R. and others. Planck 2015 results. XIII. Cosmological parameters. e-Print: arXiv:1502.01589v3 [astro-ph.CO], 2016.
[18]
  
Bahcall, N., J. Ostriker, S. Perlmutter, and P. Steinhardt. The Cosmic Triangle: Revealing the State of the Universe. Science, 1999, 284 no. 5419, 1481–1488.
[19]
  
Cornish, N.J., D.N. Spergel, G.D. Starkman, and E. Komatsu. Constraining the Topology of the Universe. Physical Review Letters, (2004), 92 no. 20, 1302.
[20]
  
Foote, R. L. A Unified Pythagorean Theorem in Euclidean, Spherical, and Hyperbolic Geometries. Math. Magazine, February 2017 90 no. 1, 59–69.
[21]
  
Hinshaw, G. and others. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results. e-Print: arXiv:0803.0732, 2008.
[22]
  
Hinshaw, G. and others. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. eThe Astrophysical Journal: Supplement Series, 2013.
[23]
  
Levin, J. Topology and the Cosmic Microwave Background. Phys. Rep., 2002, 365, 251–333.
[24]
  
Luminet, J.-P. and M. Lachieze-Rey. Cosmic Topology. Phys. Rep., (1995), 254, 135–214.
[25]
  
Luminet, J.-P., J.R. Weeks, A. Riazuelo, R. Lehoucq, R., and J.-P. Uzan. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background. Nature, (2003), 425, 593–95.
[26]
  
Rebouças, M.J., and G.I. Gomero. Cosmic Topology: A Brief Overview. Phys. Rep., December, 2004, 34 no. 4A, 1358–1366.
[27]
  
Schwarzschild, K. On the Permissible Curvature of Space. Vierteljahrschrift d. Astronom. Gesellschaft, (1900), 35, 337–47.
[28]
  
Uzan, J.-P., R. Lehoucq, and J.-P. Luminet. New developments in the search for the topology of the Universe. Nuclear Physics B Proceedings Supplements, January 2000, 80, C425+.

Web Resources