Skip to main content
\(\require{cancel}\newcommand{\nin}{} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

PrefacePreface

Geometry with an Introduction to Cosmic Topology offers an introduction to non-Euclidean geometry through the lens of questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have an edge? Is it infinitely big?

This text is intended for undergraduate mathematics and physics majors who have completed a multivariable calculus course and are ready for a course that practices the habits of thought needed in advanced courses of the undergraduate mathematics curriculum. The text is also particularly suited to independent study, with essays and other discussions complementing the mathematical content in several sections.

Mathematicians and cosmologists have expended considerable amounts of effort investigating the shape of the universe, and this field of research is called cosmic topology. Geometry plays a fundamental role in this research. Under basic assumptions about the nature of space, there is a simple relationship between the geometry of the universe and its shape, and there are just three possibilities for the type of geometry: hyperbolic geometry, elliptic geometry, and Euclidean geometry. These are the geometries we study in this text.

Chapters 2 through 7 contain the core mathematical content. The text follows the Erlangen Program, which develops geometry in terms of a space and a group of transformations of that space. Chapter 2 focuses on the complex plane, the space on which we build two-dimensional geometry. Chapter 3 details transformations of the plane, including Möbius transformations. This chapter marks the heart of the text, and the inversions in Section 3.2 mark the heart of the chapter. All non-Euclidean transformations in the text are built from inversions. We formally define geometry in Chapter 4, and pursue hypberbolic and elliptc geometry in Chapters 5 and 6, respectively. Chapter 7 begins by extending these geometries to different curvature scales. Section 7.4 presents a unified family of geometries on all curvature scales, emphasizing key results common to them all. Section 7.5 provides an informal development of the topology of surfaces, and Section 7.6 relates the topology of surfaces to geometry, culminating with the Gauss-Bonnet formula. Section 7.7 discusses quotient spaces, and presents an important tool of cosmic topology, the Dirichlet domain.

Two longer essays bookend the core content. Chapter 1 introduces the geometric perspective taken in this text. In my experience it is very helpful to spend time discussing this content in class. The Coneland and Saddleland exercises (Exercises 1.3.5 and 1.3.7) have proven particularly helpful for motivating the content of the text. In Chapter 8, after having developed two-dimensional non-Euclidean geometry and the topology of surfaces, we glance meaningfully at the present state of research in cosmic topology. Section 8.1 offers a brief survey of three-dimensional geometry and 3-manifolds, which are possible shapes of the universe. Sections 8.2 and 8.3 present two research programs in cosmic topology: cosmic crystallography and circles-in-the-sky. Measurements taken and analyzed over the last twenty years have greatly altered the way many cosmologists view the universe, and the text ends with a discussion of our present understanding of the state of the universe.

Compass and ruler constructions play a visible role in the text, primarily because inversions are emphasized as the basic building blocks of transformations. Constructions are used in some proofs (such as the Fundamental Theorem of Möbius Transformations) and as a guide to definitions (such as the arc-length differential in the hyperbolic plane). We encourage readers to practice constructions as they read along, either with compass and ruler on paper, or with software such as The Geometer's Sketchpad or Geogebra. Some Geometer's Sketchpad templates and activites related to the text can be found at the text's website.

Reading the text online

An online text is fabulous at linking content, but we emphasize that this text is meant to be read. It was written to tell a mathematical story. It is not meant to be a collection of theorems and examples to be consulted as a reference. As such, online readers of this text are encouraged to turn the pages using the “arrow” buttons on the page as opposed to clicking on section links. Read the content slowly, participate in the examples, and work on the exercises. Grapple with the ideas, and ask questions. Feel free to email the author any questions or comments about the material.

Changes from the previously published version

For those familiar with the oringial version of the text published by Jones & Bartlett, we note a few changes in the current edition. First, the numbering scheme has changed, so Example and Theorem and Figure numbers will not match the old hard copy. Of course the numbering schemes on the website and the new print options of the text do agree. For the most part, exercises have been unchanged, though more have been added. In sections with additional exercises, these new ones typically appear at the end of the section. Finally, Chapter 7 has been reorganized in an effort to place more emphasis on the family \((X_k,G_k)\text{,}\) and the key theorems common to all these geometries. This family now receives its own section, Section 7.4. The previous Section 7.4 (Observing Curvature in a Universe) has been folded into Section 7.3.