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Run, KBear, Run!

Example: How long does it take my dog to race around the trampo-
line?

I Parameter: µ
I the true average time it takes Kaizo to race around the

trampoline.

I Point estimate: x
I a sample mean. For example, I might time him on 8 occasions,

and compute the average time for these 8 trials.

I Question: How close is x likely to be to µ? In other words,
What is the sampling distribution for x?
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Kaizo Data

Here are the times (in seconds) recorded for Kaizo racing around the
trampoline.

times = c(5.1, 5.4, 5.1, 5.3, 5.2, 5.2, 5.8, 5.1)

We note:
sample size: n = length(times) = 8.
sample mean: x = mean(times) =5.275 seconds.
sample standard deviation s = sd(times) = 0.2375 seconds.
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Sampling Distribution for a sample mean

Let’s simulate:
web app

https://onlinestatbook.com/stat_sim/sampling_dist/


Chapter 7: Inference for Numerical Data

Central Limit Theorem for the sample mean

When we collect a sufficiently large sample of n independent obser-
vations from a population with mean µ and standard deviation σ, the
sampling distribution of x̄ will be nearly normal with

Mean = µ Standard Error (SE ) =
σ√
n
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Theoretical probabilities with the CLT for means

For instance, suppose for Kaizo, µ = 5.0 seconds and σ = 0.3 seconds.

1. Assuming the population (of times) is normal, what is the probability
that Kaizo will take more than 5.2 seconds to complete a single lap?

Goal: Find P(X > 5.2).

Strategy: Convert to z-scores and use pnorm().

z =
(5.2− 5.0)

0.3
= 2/3,

so

P(X > 5.2) = P(Z > 2/3) = 1− pnorm(2/3) ≈ 0.2525.

2. What is the probability that an independent sample of n = 8
measurements has a sample mean greater than 5.2 seconds?
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Theoretical probabilities with the CLT for means

Suppose for Kaizo, µ = 5.0 seconds and σ = 0.3 seconds.

2. What is the probability that an independent sample of n = 8
measurements has a sample mean greater than 5.2 seconds?

Goal: Find P(x > 5.2).

Strategy: Convert to z-scores and use pnorm().

By the CLT, x ∼ N(5.0, 0.3/
√

8), so

z =
(5.2− 5.0)

(0.3/
√

8)
≈ 1.886,

so P(x > 5.2) = P(z > 1.886) = 1− pnorm(1.886) = 0.0296.
So, while there’s about a 25% chance that a single lap takes longer than
5.2 seconds, there’s only about a 3% chance that the mean time for 8
laps is greater than 5.2 seconds.
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Theoretical probabilities with the CLT for means

Eggs

A certain hen lays eggs with weights that are normally distributed, with
µ = 50 grams and standard deviation σ = 2 grams.

a What is the probability that a single egg weighs more than 51
grams?

b What is the probability that the average weight of four eggs is
greater than 51 grams?

c What is the probability that the average weight of a dozen eggs is
greater than 51 grams?

d What is the probability that a dozen eggs weigh more than 620
grams?

Answers: (a) 0.3085; (b) 0.1587; (c) 0.0416; (d) 0.0019 (Hint: first convert

620 grams to an average of x = 620/12 = 51.667.
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Theoretical probabilities with the CLT for means

Before diving into inference on a population mean, we first need to cover
two topics related to the CLT:

I certain conditions must be satisfied.

I we rarely know σ. What can we use instead?
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Theoretical probabilities with the CLT for means

Meeting CLT conditions

Independence. The sample observations must be independent. Gather a
simple random sample from the population, if possible!

Normality. When a sample is small, we also require that the sample
observations come from a normally distributed population.
We can relax this condition more and more for larger and
larger sample sizes.
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The normality condition

The normality condition

I The CLT, which states that sampling distributions will be nearly
normal, holds true for any sample size if the population distribution
you are drawing from is nearly normal.

I While this is a helpful special case, it’s usually hard to verify
normality in small data sets.

I Exercise caution when verifying the normality condition for small
samples. It is important to examine the data and also think about
where the data come from.
I For example, ask: would I expect this distribution to be symmetric,

and am I confident that outliers are rare?
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The normality condition

Rules of thumb

n < 30: If the sample size n is less than 30 and there are no clear
outliers in the data, and the underlying distribution of
individual observations is nearly normal, then it is
reasonable to assume the sampling distribution of x is
nearly normal too.

n ≥ 30: If the sample size n is at least 30 and there are no
particularly extreme outliers, then we typically assume the
sampling distribution of x is nearly normal, even if the
underlying distribution of individual observations is not.
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The normality condition

What if we don’t know σ?

The CLT for means says

x ∼ N(µ, σ/
√
n).

If we don’t know σ, is it reasonable to use the sample standard deviation
s as an estimate, and say

x ∼ N(µ, s/
√
n)?

Not necessarily...
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The normality condition

The trouble with using s

The strategy of using s as an estimate for σ tends to work well when we
have a lot of data and can estimate σ using s accurately.
However, the estimate is less precise with smaller samples, and this leads
to problems when using the normal distribution to model x .
For small samples, we’ll find it useful to use a new distribution for
inference calculations called the t-distribution.
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The normality condition

Review: what purpose does a large sample serve?

As long as observations are independent, and the population distribution
is not extremely skewed, a large sample would ensure that...

I the sampling distribution of the mean is nearly normal

I the estimate of the standard error, as s√
n

, is reliable
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Introducing the t distribution

The t distribution

I When the population standard deviation is unknown (almost
always), the uncertainty of the standard error estimate is addressed
by using a new distribution: the t-distribution.

I t-distribution page.

https://mphitchman.com/stats/slides/Tdistribution.html
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Introducing the t distribution

Recap: The t-distribution

I Always centered at zero, like the standard normal (z) distribution.

I This distribution also has a bell shape, but its tails are thicker than
the standard normal model.

I Extra thick tails are helpful for resolving our problem with a less
reliable estimate the standard error (since n is small)

I Has a single parameter: degrees of freedom (df ).

Q: What happens to shape of the t-distribution as df increases?

Approaches normal.
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Constructing confidence intervals using the t distribution

Kaizo’s Lap time around the trampoline

I From the sample, give a 95% confidence interval for µ the average
time it takes Kaizo to complete a lap around the trampoline.

I Recall the data: n = 8, x = 5.275, and s = 0.2375.
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Constructing confidence intervals using the t distribution

Confidence interval for a mean when n is small.

I Confidence intervals are always of the form

point estimate±MOE

I MOE is always calculated as the product of a critical value and SE.

I Since sample means from small samples follow a t-distribution (and
not a z-distribution), the critical value is a t? (as opposed to a z?).

point estimate± t? × SE

I More precisely, a confidence interval in this setting looks like:

x ± t∗ × s√
n
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Constructing confidence intervals using the t distribution

Finding the critical t (t?)

First note that the sample size is n = 8, so df = n − 1 = 7.
What is the critical t score for 95% confidence in this case?
Using R, we use qt (rather than qnorm) since we’re finding a t∗ instead
of a z∗:

> qt(p = 0.975, df = 7)

[1] 2.364624



Chapter 7: Inference for Numerical Data

Constructing confidence intervals using the t distribution

95% CI for Kaizo mean lap time

Recall the data: n = 8, x = 5.275, and s = 0.2375.

5.275± 2.3646× 0.2375√
8

5.275± 0.199

5.076 to 5.474 seconds
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Constructing confidence intervals using the t distribution

Interpreting the CI

Which of the following is the best interpretation for the confidence interval
we just calculated?

µ = (5.08, 5.47)

(a) 95% of all of Kaizo’s lap times will be between 5.08 and 5.47
seconds.

(b) We are 95% confident that on any given lap, Kaizo’s time will be
between 5.08 and 5.47 seconds.

(c) We are 95% confident that Kaizo’s average lap time is between 5.08
and 5.47 seconds.
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Evaluating hypotheses using the t distribution

Hypotheses

The standard of excellence for trampoline laps is 5 seconds. Do we have
reason to believe that Kaizo’s true average lap time µ exceeds 5 seconds?
Which hypotheses do we want to test this question?

(a) H0 : µ = 5
HA : µ 6= 5

(b) H0 : x = 5
HA : x > 5

(c) H0 : µ = 5
HA : µ > 5

(d) H0 : p = 5
HA : p > 5
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Evaluating hypotheses using the t distribution

Conditions

I Independence: We are told to assume the sample is independent.

I Sample size / skew:
I The sample distribution does not appear to be extremely skewed

(plotting the 8 times in a histogram in RStudio), but it’s very
difficult to assess with such a small sample size. We might want to
think about whether we would expect the population distribution to
be skewed or not – perhaps slightly skewed right, with the occasional
slow lap time, but it seems reasonable that the data is nearly normal,
and the sample has no extreme outliers.

I We do not know σ and n is too small to assume s is a reliable
estimate for σ.

Q: So what do we do when the sample size is small?
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Evaluating hypotheses using the t distribution

Finding the test statistic

Test statistic for inference on a mean for a small sample

The test statistic for inference on a small sample mean is the T statistic
with df = n − 1.

Tdf =
point estimate− null value

SE

in context...

point estimate = x̄ = 5.275

SE =
s√
n

=
.2375√

8
= 0.084

T =
5.275− 5

0.084
= 3.274

df = 8− 1 = 7

Note: Null value is 5 because in the null hypothesis we set µ = 5.
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Evaluating hypotheses using the t distribution

Finding the p-value

I The p-value is, once again, calculated as a tail area, this time under
the t7 distribution greater than our test statistic (because Ha : µ > 5

I Using R, we use pt() instead of pnorm()

> 1-pt(3.274, df = 7)

[1] 0.006799545

I Using a web app:
https://gallery.shinyapps.io/dist calc/

I Or when these aren’t available, we can use a t-table (see course
resource page)

https://gallery.shinyapps.io/dist_calc/
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Evaluating hypotheses using the t distribution

Conclusion of the test

Q: What is the conclusion of this hypothesis test?

Since the p-value is quite low, we conclude that the data provide strong
evidence against the null in favor of the alternative. That is, we have
strong evidence that Kaizo’s average lap time exceeds 5 seconds.
But don’t fret! He’s getting stronger every day!!
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Synthesis

Synthesis

Q: Does the conclusion from the hypothesis test agree with the findings
of the confidence interval?

Yes, the hypothesis test found significant evidence that Kaizo’s lap time
exceeds 5 seconds, and the CI doesn’t contain 5, but gives an interval of
numbers greater than 5.
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Synthesis

Recap: Inference using the t-distribution

I If σ is unknown, use the t-distribution with SE = s√
n

.

I Conditions:
I independence of observations (often verified by random sample, and

if sampling w/o replacement, n < 10% of population)
I no extreme skew

I Hypothesis testing:

Tdf =
point estimate− null value

SE
, where df = n − 1

I Confidence interval: point estimate± t?df × SE
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