Section 5.2

Confidence Intervals for a Proportion

Estimating A Population Parameter

- We have discussed two types of population parameters:
- A population mean μ
- A population proportion p

Estimating A Population Parameter

- We have discussed two types of population parameters:
- A population mean μ
- A population proportion p
- We have discussed the notion of a point estimate - a single number, calculated from a sample, that estimates the population parameter:
- A sample mean \bar{x} is a point estimate for μ
- A sample proportion \hat{p} is a point estimate for p
- In this section we discuss the notion of an interval estimate for a population parameter.

Estimating A Population Parameter

- We have discussed two types of population parameters:
- A population mean μ
- A population proportion p
- We have discussed the notion of a point estimate - a single number, calculated from a sample, that estimates the population parameter:
- A sample mean \bar{x} is a point estimate for μ
- A sample proportion \hat{p} is a point estimate for p
- In this section we discuss the notion of an interval estimate for a population parameter.
- A plausible range of values for the population parameter is called a confidence interval.

Confidence intervals

- Using only a sample statistic to estimate a parameter is like fishing in a murky lake with a spear, and using a confidence interval is like fishing with a net.
- If we report a point estimate, we probably won't hit the exact population parameter. If we report a range of plausible values we have a good shot at capturing the parameter.
- A confidence interval in general has this look:
point estimate \pm margin of error

Confidence intervals

- Using only a sample statistic to estimate a parameter is like fishing in a murky lake with a spear, and using a confidence interval is like fishing with a net.
- If we report a point estimate, we probably won't hit the exact population parameter. If we report a range of plausible values we have a good shot at capturing the parameter.
- A confidence interval in general has this look:
point estimate \pm margin of error
- For instance, you might read in the paper A 95\% confidence interval for the proportion of voters in favor of this issue is $57 \% \pm 3 \%$.

In other words, the interval tells us that, based on our sample, we believe the population proportion p is somewhere between 54% and 60\%.

A 95\% Confidence Interval for p

Formula

A 95\% confidence interval for a population proportion p, based on a sample of size n that produced sample proportion \hat{p}, is given by the formula:

$$
\hat{p} \pm 1.96 \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} .
$$

Yellow Rectangles

Estimate the population proportion p of yellow rectangles in Hitchman's rectangle data set.

- We sample $n=100$, and find 23 of the 100 rectangles are yellow (Dane is not among them).
- $\hat{p}=23 / 100=0.23$ (the center of our interval)
- The margin of error (MOE):

$$
\begin{aligned}
\mathrm{MOE} & =1.96 \cdot \sqrt{\hat{p}(1-\hat{p}) / n} \\
& =1.96 \cdot \sqrt{(.23)(.77) / 100} \\
& =0.082
\end{aligned}
$$

- The 95\% confidence interval:

$$
0.23 \pm 0.082 \quad \text {-OR- } \quad 0.148 \text { to } 0.312
$$

Justifying the formula

- The CLT says that (under certain conditions) the sample proportion \hat{p} lives in a distribution approximately normal.

Justifying the formula

- The CLT says that (under certain conditions) the sample proportion \hat{p} lives in a distribution approximately normal.
- In any normal distribution 95\% of the distribution is within 2 standard deviations of the mean - actually it's closer to 1.96 standard deviations of the mean

Justifying the formula

- The CLT says that (under certain conditions) the sample proportion \hat{p} lives in a distribution approximately normal.
- In any normal distribution 95\% of the distribution is within 2 standard deviations of the mean - actually it's closer to 1.96 standard deviations of the mean
- A single \hat{p} calculated from a single sample of size n has probability 0.95 of being within 1.96 standard deviations of p !

Q: Which of the following is the correct interpretation of the 95\% confidence interval we computed for the yellow rectangle proportion?
We are 95% confident that
(a) 14.8% to 31.2% of all rectangles in my sample are yellow.
(b) 14.8% to 31.2% of all rectangles in the population of all of Hitchman's rectangles are yellow.
(c) there is a 14.8% to 31.2% chance that a randomly chosen rectangle is yellow.
(d) there is a 14.8% to 31.2% chance that 95% of all the rectangles are yellow.

Q: Which of the following is the correct interpretation of the 95\% confidence interval we computed for the yellow rectangle proportion?
We are 95% confident that
(a) 14.8% to 31.2% of all rectangles in my sample are yellow.
(b) 14.8% to 31.2% of all rectangles in the population of all of Hitchman's rectangles are yellow.
(c) there is a 14.8% to 31.2% chance that a randomly chosen rectangle is yellow.
(d) there is a 14.8% to 31.2% chance that 95% of all the rectangles are yellow.

What does 95\% confident mean?

- Suppose we took many samples of 100 rectangles, and built a confidence interval from each sample using the equation point estimate $\pm 1.96 \times S E$.
- Then about 95% of those intervals would contain the true population proportion (p).

What does 95\% confident mean?

Simulation (100 repetitions): $p=0.40$, determine a 95% confidence interval for p based on a sample of size $n=50$.

What does 95\% confident mean?

Simulation (100 repetitions): $p=0.40$, determine a 95% confidence interval for p based on a sample of size $n=50$.

We see that 94 of the 100 confidence intervals in this simulation actually contain the population proportion $p=.4$.

Width of an interval

Q: If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a smaller interval?

Width of an interval

Q: If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a smaller interval?
A wider interval.

Width of an interval

Q: If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a smaller interval?
A wider interval.

Q: Can you see any drawbacks to using a wider interval?

Width of an interval

Q: If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a smaller interval?
A wider interval.
Q: Can you see any drawbacks to using a wider interval?

If the interval is too wide it may not be very informative.
Image source: http://web.as.uky.edu/statistics/users/earo227/misc/garfield_weather.gif

Changing the confidence level

$$
\text { point estimate } \pm z^{\star} \times S E
$$

- In a confidence interval, $z^{\star} \times S E$ is called the margin of error, and for a given sample, the margin of error changes as the confidence level changes.
- In order to change the confidence level we need to adjust z^{\star} in the above formula.
- Commonly used confidence levels in practice are $90 \%, 95 \%, 98 \%$, and 99\%.
- For a 95% confidence interval, $z^{\star}=1.96$.
- However, using the standard normal (z) distribution, it is possible to find the appropriate z^{\star} for any confidence level.

Q: Which of the below Z scores is the appropriate z^{\star} when calculating a 98\% confidence interval?
(a) $Z=2.05$
(d) $Z=-2.33$
(b) $Z=1.96$
(e) $Z=-1.65$
(c) $Z=2.33$

Q: Which of the below Z scores is the appropriate z^{\star} when calculating a 98\% confidence interval?
(a) $Z=2.05$
(d) $Z=-2.33$
(b) $Z=1.96$
(e) $Z=-1.65$
(c) $Z=2.33$

Finding z^{*} for a given confidence level

A level L confidence interval for a population proportion p

$$
\hat{p} \pm z^{*} S E
$$

\hat{p} - sample proportion from an independent sample of size n $\mathrm{SE}=\sqrt{\hat{p}(1-\hat{p}) / n}$, and $z^{*}=\operatorname{qnorm}(L+(1-L) / 2)$.

Confidence levels impact the size of the confidence interval

Interpreting confidence intervals

Confidence intervals are ...

- always about the population
- not probability statements
- only about population parameters, not individual observations
- only reliable if the sample statistic they're based on is an unbiased estimator of the population parameter

Confidence interval for a single proportion

Once you've determined a one-proportion confidence interval would be helpful for an application, there are four steps to constructing the interval:

Prepare. Identify \hat{p} and n, and determine what confidence level you wish to use.
Check. Verify the conditions to ensure \hat{p} is nearly normal. For one-proportion confidence intervals, use \hat{p} in place of p to check the success-failure condition.
Calculate. If the conditions hold, compute $S E$ using \hat{p}, find z^{\star}, and construct the interval.
Conclude. Interpret the confidence interval in the context of the problem.

Example: Solar Energy

In a Pew Research poll in 2018 about solar energy, 84.8\% of respondents supported expanding the use of wind turbines (see text p. 186). Follow the four steps for creating a 99% confidence interval for the level of American support for expanding the use of wind turbines for power generation.

Example: Solar Energy

In a Pew Research poll in 2018 about solar energy, 84.8\% of respondents supported expanding the use of wind turbines (see text p. 186). Follow the four steps for creating a 99% confidence interval for the level of American support for expanding the use of wind turbines for power generation.

Prepare. Here, we are being asked to use 99% confidence level, we have $n=1000$ and $\hat{p}=.848$.

Example: Solar Energy

Check. The Pew survey was a random sample, and we can check that both counts (in favor and opposed) are at least 10:

$$
n \hat{p}=848 \text { and } n(1-\hat{p})=152 .
$$

Example: Solar Energy

Check. The Pew survey was a random sample, and we can check that both counts (in favor and opposed) are at least 10:

$$
n \hat{p}=848 \text { and } n(1-\hat{p})=152
$$

Calculate. $z^{*}=\operatorname{qnorm}(.995)=2.576, \mathrm{SE}=\sqrt{\frac{.848(1-.848)}{1000}}=0.0114$. So the margin of error MOE $=2.576 \cdot 0.0114=0.0294$ and the 99% confidence interval is:

$$
0.848 \pm 0.0294 \text { or }(0.8186,0.8774)
$$

Example: Solar Energy

Check. The Pew survey was a random sample, and we can check that both counts (in favor and opposed) are at least 10:

$$
n \hat{p}=848 \text { and } n(1-\hat{p})=152
$$

Calculate. $z^{*}=\operatorname{qnorm}(.995)=2.576, \mathrm{SE}=\sqrt{\frac{.848(1-.848)}{1000}}=0.0114$. So the margin of error MOE $=2.576 \cdot 0.0114=0.0294$ and the 99% confidence interval is:

$$
0.848 \pm 0.0294 \text { or }(0.8186,0.8774)
$$

Conclude. We are 99\% confident the proportion of American (in 2018) who support expanding the use of wind turbines is between 81.9% and 87.7\%.

Choosing a sample size to obtain desired margin of error

The margin of error for a confidence interval is:

$$
\mathrm{MOE}=z^{*} \cdot \sqrt{\frac{p(1-p)}{n}} .
$$

If we specify a confidence level, say 95%, then this determines z^{*}, ($z^{*}=1.96$ in this case).
The other factor we control is our choice of sample size, n. As n increases, MOE decreases.

Example

Find the sample size n that will give a MOE of .03 in a 95% confidence interval, assuming $p=.5$.

Solution

Solve this equation for n :

$$
\begin{aligned}
.03 & =1.96 \cdot \sqrt{\frac{(.5)(.5)}{n}} \\
\frac{.03}{1.96} & =\sqrt{\frac{.25}{n}} \\
\left(\frac{.03}{1.96}\right)^{2} & =\frac{.25}{n} \\
n & =\frac{(.25)(1.96)^{2}}{(.03)^{2}} \approx 1067.11
\end{aligned}
$$

Since n must be a whole number, we round up to 1068 .

General Formula for specifying sample size n to produce desired MOE

We can solve the MOE formula for n we obtain the following general formula:

Finding sample size for desired MOE

$$
n=p(1-p)\left(\frac{z^{*}}{\mathrm{MOE}}\right)^{2}
$$

If you don't know p, letting $p=1 / 2$ to produce an n that will work regardless of the actual value of p, in which case the formula for n becomes

$$
n=\frac{1}{4}\left(\frac{z^{*}}{\mathrm{MOE}}\right)^{2}
$$

