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Sampling Variability

I Recall, we are often interested in population parameters.

I Complete populations are difficult to collect data on, so we use
sample statistics as point estimates for the unknown population
parameters of interest.

I Error in the estimate = difference between population parameter
and sample statistic

I Bias is systematic tendency to over- or under-estimate the true
population parameter.

I Sampling error describes how much an estimate will tend to vary
from one sample to the next.
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Two commonly studied population parameters

Population Mean

I symbol we use: µ

I µ represents the (unknown) mean of a numerical variable
describing a population

I Example: µ = the mean wingspan of monarch butterflies

Population Proportion

I symbol we use: p

I p represents the (unknown) proportion of some population
having a particular feature.

I Example: p = the proportion of adults living in the U.S. who
view climate change as an existential threat.
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Understanding the variability of a point estimate

According to the Linfield Fact book for 20-21, updated in April 2021,
32% of the 1,911 students are First Generation Students.
https:// inside.linfield.edu/ institutional-research/ factbook.html

I p = .32 is a population proportion. (The population here is all
Linfield students, and p is the proportion of all 2021 Linfield
students who were First Gen.)

I Suppose each of us gathers an independent sample of 100 Linfield
students, and determines p̂, the proportion of First Gen students in
our sample.

I The sample proportion p̂ is a point estimate for the population
proportion p, and n = 100 is the sample size.

I We would expect our different samples to yield slightly different
values of p̂.

I How much sampling variability is there likely to be? We can repeat
the sampling to get a sense.

https://inside.linfield.edu/institutional-research/factbook.html
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Understanding the variability of a point estimate

pop_size <- 1911

samp_size<- 100

linfield <- c(rep("first gen", round(0.32 * pop_size,0)),

rep("not", round(0.68 * pop_size,0)))

# 2. Sample 100 students.

sampled_entries <- sample(linfield, size = samp_size)

# 3. Compute p-hat: count the number that are "first gen",

# then divide by the sample size.

sum(sampled_entries == "first gen") / samp_size
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Understanding the variability of a point estimate

Sampling distribution

I Now, if each of us gathers our own sample, what would the resulting
distribution of sample proportions look like?
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I Suppose you were to repeat this process many, many times and
obtain many, many p̂s. The distribution of values for p̂ is called a
sampling distribution.
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Understanding the variability of a point estimate

Sampling distribution
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Understanding the variability of a point estimate

Q: What is the shape and center of this distribution? Based on this
distribution, what do you think is the true population proportion?
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Understanding the variability of a point estimate

Q: What is the shape and center of this distribution? Based on this
distribution, what do you think is the true population proportion?
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The distribution is unimodal and symmetric. A reasonable guess for the
true population proportion is the center of this distribution,
approximately 0.32.
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Understanding the variability of a point estimate

Sampling distributions are never observed

I In real-world applications, we never actually observe the sampling
distribution, yet it is useful to always think of a point estimate as
coming from such a hypothetical distribution.

I Understanding the sampling distribution will help us characterize
and make sense of the point estimates that we do observe.
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Central Limit Theorem

Central Limit Theorem for proportions

Central limit theorem for proportions

If certain conditions are met, sample proportions will be nearly nor-
mally distributed with mean equal to the pop’n proportion, p, and

standard error equal to
√

p (1−p)
n .

p̂ ∼ N

(
p,

√
p (1 − p)

n

)
I It wasn’t a coincidence that the sampling distribution we saw earlier

was symmetric, and centered at the true population proportion.

I Note that as n increases SE decreases. Does this make sense?

I As n increases samples will yield more consistent p̂s, i.e. variability
among p̂s will be lower.
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Central Limit Theorem

CLT - Conditions

Certain conditions must be met for the CLT to apply:

1. Independence: Sampled observations must be independent.
This is difficult to verify, but is more likely if
I random sampling/assignment is used, and
I if sampling without replacement, n < 10% of the population.

2. Sample size: There should be at least 10 expected successes and 10
expected failures in the observed sample.
This is difficult to verify if you don’t know the population proportion
(or can’t assume a value for it). In those cases we look for the
number of observed successes and failures to be at least 10.
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Central Limit Theorem

The CLT and the Linfield simulation

The true proportion of Linfield students who are First Gen: p = .32. In a
sample of n = 100 the distribution for p̂ will be approximately normal
with

mean = .32

and

SE =

√
p(1 − p)

n
=

√
.32 · .68

100
≈ 0.04665.

Let’s compare this bell curve with the histogram of 100,000 simulations
of finding p̂
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Central Limit Theorem

The CLT and the Linfield simulation

N(0.32, 0.04665)
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Applying the Central Limit Theorem to a real-world setting

When p is unknown

I The CLT states SE =
√

p (1−p)
n , with the condition that np and

n(1 − p) are at least 10, however we often don’t know the value of
p, the population proportion

I In these cases we substitute p̂ for p
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More details regarding the Central Limit Theorem

When p is low

Q: Suppose we have a population where the true population proportion is
p = 0.05, and we take random samples of size n = 50 from this
population. We calculate the sample proportion in each sample and plot
these proportions. Would you expect this distribution to be nearly
normal? Why, or why not?

No, the success-failure condition is not met (50 ∗ 0.05 = 2.5), hence we
would not expect the sampling distribution to be nearly normal.
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More details regarding the Central Limit Theorem

Q: What happens when np and/or n(1 − p) < 10?

n = 10 n = 25

p = 0.1
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More details regarding the Central Limit Theorem

When the conditions are not met...

I When either np or n(1− p) is small, the distribution is more discrete.

I When np or n(1 − p) < 10, the distribution is more skewed.

I The larger both np and n(1 − p), the more normal the distribution.

I When np and n(1 − p) are both very large, the discreteness of the
distribution is hardly evident, and the distribution looks much more
like a normal distribution.
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Extending the framework for other statistics

Extending the framework for other statistics

I The strategy of using a sample statistic to estimate a parameter is
quite common, and it’s a strategy that we can apply to other
statistics besides a proportion.
I Take a random sample of students at a college and ask them how

many extracurricular activities they are involved in to estimate the
average number of extra curricular activities all students in this
college are interested in.

I The principles and general ideas are from this chapter apply to other
parameters as well, even if the details change a little.
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Using CLT and methods from Section 4.1 to estimate probabilities

Using CLT to approximate probabilities

Linfield Fact Book 2020-21

According to the Linfield Fact book for 20-21, updated in April 2021,
22% of undergraduates came to Linfield as transfer students.
In a simple random sample of 100 Linfield students, use the CLT to
approximate the probability that fewer than 10 of them are transfer
students?

First check: are conditions of CLT being met?

I Independence: Yep! SRS, and n = 100 < 10% of the pop’n

I Sample size: Yep!, p = .22, so np = 22 and n(1 − p) = 88, both are
at least 10.
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Using CLT and methods from Section 4.1 to estimate probabilities

Transfer Students in a SRS of Linfield Students

Recall, n = 100, p = .22

I p̂ - sample proportion of transfer students. By the CLT,
p̂ ∼ N(0.22, 0.04142)

I We estimate P(p̂ < 0.1) by first converting to z-scores:

P(p̂ < 0.1) = P(Z < (0.1 − 0.22)/0.04142)

= P(Z < −2.90)

≈ 0.0019.

I So there is about a 0.2% chance that a SRS of 100 Linfield
students would include fewer than 10 transfer students.

I In other words, there is a about a 1 in 500 chance that an SRS
of 100 students would have fewer than 10 transfer students.
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