Normal Distributions

Prof Hitchman

MATH 140

Density Curves

Density Curves

- Idealized shape of a distribution
- Two defining features of a density curve:
- The area underneath the curve equals 1
- The curve is on or above the horizontal axis.
- With these features in place, area under curve \leftrightarrow proportions

Skewed Right Distributions

Skewed Left Distributions

Uniform Distributions

Symmetric and bell-shaped distributions

All together now!

Some density curves

Continuous Random Variables

- A continuous random variable X has a density curve associated with it.
- $P(a \leq X \leq b) \leftrightarrow$ Area under density curve between a and b.
- Note: $P(X=a)=0$, for any value a.

Example: A continuous random variable

Suppose a random variable X has the following density curve

- Wait, is this a density curve?
- Does it lie above x-axis? Check!
- Is the area underneath it equal to 1 ? Check!

Example: A continuous random variable

- Notes:
- The values of the distribution consist of all real numbers from 0 to 2 .
- The shape tells me that values close to 1 are more likely to occur than values close to 0 or 2 .

Area under a density curve corresponds to proportions

Question: What proportion of the distribution is between 1 and 2? In other words, what is $P(1 \leq X \leq 2)$?

- This shaded region is a right triangle whose legs are both 1 , so the area is

$$
A=\frac{1}{2}(1)(1)=0.5 .
$$

- So 50% of the distribution is between 1 and 2 .
- We can also write $P(1 \leq X \leq 2)=0.5$.

Area corresponds to proportion

Question: What proportion of the distribution has values between 1.5 and 2 ?

- The shaded region above is also a right triangle, and $A=\frac{1}{2}(0.5)(0.5)=0.125$.
- So 12.5% of the distribution is between 1.5 and 2 .
- Put another way, $P(1.5 \leq X \leq 2)=0.125$.

Area corresponds to proportion

Question: What proportion of the distribution has values between 1 and 1.5 ? What is $P(X=1.5)$?

- By subtraction, $.5-.125=.375$, so $P(1 \leq X \leq 1.5)=0.375$.
- $P(X=1.5)=0$ since for a continuous X, the probability of a particular value happening is always 0 .

The Normal Distribution

The Normal Distribution

- A symmetric, bell-shaped distribution.
- Many variables are nearly normal, but none are exactly normal.
- We will use it in data exploration and to solve important problems in statistics.
- Its shape is uniquely determined by two paramters:
- μ-mean
- σ - standard deviation
- $N(\mu, \sigma)$ denotes this distribution

A few Normal Distributions

The standard normal distribution $N(0,1)$

- Has mean $\mu=0$, and standard deviation $\sigma=1$
- It is of fundamental importance in statistics

Area under the standard normal distribution

- Let Z denote a value in $N(0,1)$
- Let $P(-0.23<Z<1.54)$ denote the proportion of the distribution between -0.23 and 1.54 .
- This region is not a simple geometric shape, but this area can be found using methods from Calculus.
- We have lots of resources available for computing areas under normal distributions, as we shall see.

Computing areas under the standard normal distribution

Various Approaches

- Your graphing calculator (you can research this)
- RStudio (strongly recommend! I will demonstrate)
- Probability Table in book, p. 410-411 (old school)
- Other online app

The pnorm() function in R

The pnorm(z) function gives the area to the left of z in $N(0,1)$

- pnorm(1.54) $=0.9382$
- 93.82% of the distribution has a value less than $z=1.54$.
- The area to the right of 1.54 is 1 -pnorm (1.54) $=0.0618$

Find $P(-0.23<Z<1.54)$

pnorm(1.54)-pnorm(-0.23)
\#\# [1] 0.5291739

Find $P(-0.23<Z<1.54)$

- Why does pnorm(1.54)-pnorm (-0.23) do the trick?
- Subtracting two "areas to the left" leaves the area in between.
- So 52.92% of the dist'n is between -0.23 and 1.54 .

Example: Finding proportions in $N(0,1)$.

We use R :
pnorm(1)-pnorm(-1)
\#\# [1] 0.6826895

The 68-95-99.7 Rule

In any normal distribution $N(\mu, \sigma)$:

- About 68% of the distribution is within 1 standard deviation of the mean.
- About 95% of the distribution is within 2 standard deviations of the mean.
- About 99.7% of the distribution is within 3 standard deviations of the mean.

Example: In $N(10,3)$,

- Roughly, 68% of the dist' n is between 7 and 13 , and
- 95% of the dist'n is between 4 and 16 , and
- 99.7% of the dist'n (almost all!) is between 1 and 19 .

The 68-95-99.7 Rule

Upper Tail estimates

Upper Tail estimates

Estimating areas

Example: Suppose the distribution of lengths of lumber labelled as 8 foot long $2 \times 4 \mathrm{~s}$ is normally distributed with $\mu=7.98 \mathrm{ft}$ and $\sigma=0.02 \mathrm{ft}$.

1. The 68-95-99.7 rule tells us that essentially all boards sold will have length in a certain range. What is this range?
2. If I grab a board at random, what are the chances that it is actually 8 feet or longer?

Estimating areas

Solution

1. Nearly the entire distribution (99.7\%) is within 3 standard deviations of the mean, meaning nearly every board has length in the range: $\mu-3 \sigma$ to $\mu+3 \sigma$. So, nearly every " 8 ft 2 by 4 " has length in the range from 7.92 ft to 8.04 ft .
2. 8 ft is exactly 1 st dev above the mean, so there is about a 16% chance that a random board has length at least 8 ft .

The qnorm() function in R .

- The qnorm(A) function in R gives the z-value in $N(0,1)$ that has area A to the left of it.
- So it works "backwards" from the pnorm() function:
- pnorm(z) returns the area A to the left of z
- qnorm(A) returns the z-value that has area A to the left of it.
- For instance, what value of z is greater than 90% of the standard normal distribution?
- qnorm (.9) $=1.28$
- So the area to the left of the z-value 1.28 equals 0.9 .

Example with qnorm(A)

Find the value z in $N(0,1)$ that has 20% of the distribution to the right of it.

Example with qnorm(A)

Solution 1

- Having 20% of the distribution to the right means having area .20 to the right, which means having area $1-.20=.80$ to the left.
- Compute qnorm(.80), which is 0.8416212 . So, the value $z \approx$ 0.84 has about 20% of the distribution to the right of it.

Solution 2

- Compute-qnorm (.2), which is 0.8416212 .

Why do these two approaches agree? Is it always true that qnorm (1-A) = -qnorm(A)?

The symmetry of the normal distribution

Useful fact For any value z, the area to the right of z equals the area to the left of $-z$. The two shaded areas are equal.

This tells us two things:

1. $\operatorname{pnorm}(-z)=1$-pnorm (z)
2. qnorm(1-A) $=-$ qnorm (A)

Other normal distributions $N(\mu, \sigma)$

Example Let X denote the wingspan of a monarch butterfly. Experience shows that the random variable X is approximately normal with mean $\mu=3.5$ inches and standard deviation $\sigma=0.3$ inches.

Q: What proportion of Monarch butterflies have wingspans greater than 4 inches? In other words, what is $P(X>4.0)$?

Standardizing with Z-scores

If x is a value in $N(\mu, \sigma)$, its Z-score tells us how far away x is from μ in standard deviation units.

$$
Z=\frac{x-\mu}{\sigma}
$$

The Z-score of 4.0 in the butterfly wingspan distribution $N(3.5,0.3)$ is

$$
Z=\frac{4.0-3.5}{0.3} \approx 1.667
$$

This shows that in $N(3.5,0.3)$ the value 4.0 is about 1.67 standard deviations away from the mean.

Standardizing with Z-scores

- We were asked to find the proportion of Monarch butterflies with wingspan greater than 4.0 inches.
- This proportion equals the area to the right of 4.0 in $N(3.5,0.3)$.
- This area equals the area to the right of 1.667 in $N(0,1)$.
- That is,

$$
P(X>4.0)=P(Z>1.667)
$$

and we use R to find this proportion:
1-pnorm(1.667)
\#\# [1] 0.0477572

- About 4.8% of all Monarch butterflies have wingspan exceeding 4 inches.

The pnorm() function for $N(\mu, \sigma)$

- We can use pnorm() directly for any $N(\mu, \sigma)$, without first converting to Z-scores:

1-pnorm (4, mean=3.5, sd=0.3)
\#\# [1] 0.04779035

- About 4.8% of all Monarch butterflies have wingspan exceeding 4 inches.
- Having said that, it is often helpful to compute Z-scores for values in $N(\mu, \sigma)$, and we will continue to do so.

Example: Temperature in a kiln

- The temperature at any random location in a kiln used in the manufacture of bricks is normally distributed with mean $1050^{\circ} \mathrm{F}$ and standard deviation $50^{\circ} \mathrm{F}$.
- That is, the temperature in the kiln follows the distribution $N(1050,50)$.
- If bricks are fired at a temperature above $1140^{\circ} \mathrm{F}$, they will crack and must be thrown away.
- If the bricks are placed randomly throughout the kiln, what proportion of bricks will crack during the firing process?

Example: Temperature in a kiln

- We want to find $P(X>1140)$.
- First standardize with Z-scores:

$$
P(X>1140)=P\left(Z>\frac{1140-1050}{50}\right)=P(Z>1.80)
$$

$N(1050,50)$
$N(0,1)$

Example: Temperature in a kiln

- We use R to find this proportion:

1-pnorm(1.8)
\#\# [1] 0.03593032

- About 3.6% of the bricks will crack during the firing process.
- Recall, the original question asked for the proportion of the $N(1050,50)$ greater than 1140 , and this can be found directly in R :

1-pnorm(1140,mean=1050, sd=50)
\#\# [1] 0.03593032

Finding benchmark values in $N(\mu, \sigma)$.

Example: Test scores on a remarkably fun stats exam are approximately normal with $\mu=82, \sigma=7$. How high does one need to score on the exam so that 30% of the class had a lower score?

We want to find the value L so that $P(X<L)=0.30$.

Solution:

1. Find the Z-score in $N(0,1)$ that has area to the left $=0.30$.

This is $z=$ qnorm (.3) $=-0.5244005$

Finding benchmark values in $N(\mu, \sigma)$.

Solution:

2. Find the value of L in $N(82,7)$ that has Z-score $=-0.524$. To do this, solve this equation for L :

$$
\frac{L-82}{7}=-0.524
$$

We multiply both sides by 7 , then add 82 to both sides, to obtain:

$$
L=7 \cdot(-0.524)+82 \approx 78.3
$$

Finding benchmark values in $N(\mu, \sigma)$.

Solution:

3. We have found that in $N(82,7), 30 \%$ of the distribution will be less than $L=78.3$.

4. In other words, 30% of the scores on this remarkably fun stats test will be less than 78.3.
