Normal Distributions

Prof Hitchman

MATH 140

Density Curves

Density Curves

- Idealized shape of a distribution
- Two defining features of a density curve:
 - The area underneath the curve equals 1
 - The curve is on or above the horizontal axis.
- \blacktriangleright With these features in place, area under curve \leftrightarrow proportions

Skewed Right Distributions

Skewed Left Distributions

Uniform Distributions

Symmetric and bell-shaped distributions

All together now!

Some density curves

x value

Continuous Random Variables

- A continuous random variable X has a density curve associated with it.
- ▶ $P(a \le X \le b) \leftrightarrow$ Area under density curve between *a* and *b*.
- Note: P(X = a) = 0, for any value a.

Example: A continuous random variable

Suppose a random variable X has the following density curve

Wait, is this a density curve?

- Does it lie above x-axis? Check!
- Is the area underneath it equal to 1? Check!

Example: A continuous random variable

Notes:

- The values of the distribution consist of all real numbers from 0 to 2.
- The shape tells me that values close to 1 are more likely to occur than values close to 0 or 2.

Area under a density curve corresponds to proportions

Question: What proportion of the distribution is between 1 and 2? In other words, what is $P(1 \le X \le 2)$?

This shaded region is a right triangle whose legs are both 1, so the area is

$$A = \frac{1}{2}(1)(1) = 0.5.$$

So 50% of the distribution is between 1 and 2.
We can also write P(1 ≤ X ≤ 2) = 0.5.

Area corresponds to proportion

Question: What proportion of the distribution has values between 1.5 and 2?

- The shaded region above is also a right triangle, and $A = \frac{1}{2}(0.5)(0.5) = 0.125.$
- ► So 12.5% of the distribution is between 1.5 and 2.
- Put another way, $P(1.5 \le X \le 2) = 0.125$.

Area corresponds to proportion

Question: What proportion of the distribution has values between 1 and 1.5? What is P(X = 1.5)?

▶ By subtraction, .5 - .125 = .375, so P(1 ≤ X ≤ 1.5) = 0.375.
 ▶ P(X = 1.5) = 0 since for a continuous X, the probability of a particular value happening is always 0.

The Normal Distribution

The Normal Distribution

- A symmetric, bell-shaped distribution.
- Many variables are nearly normal, but none are exactly normal.
- We will use it in data exploration and to solve important problems in statistics.
- Its shape is uniquely determined by two paramters:
 - µ mean
 - σ standard deviation
- $N(\mu, \sigma)$ denotes this distribution

A few Normal Distributions

The standard normal distribution N(0,1)

- Has mean $\mu = 0$, and standard deviation $\sigma = 1$
- It is of fundamental importance in statistics

Area under the standard normal distribution

• Let Z denote a value in N(0,1)

- ▶ Let P(-0.23 < Z < 1.54) denote the proportion of the distribution between -0.23 and 1.54.</p>
- This region is not a simple geometric shape, but this area can be found using methods from Calculus.
- We have lots of resources available for computing areas under normal distributions, as we shall see.

Computing areas under the standard normal distribution

Various Approaches

- Your graphing calculator (you can research this)
- RStudio (strongly recommend! I will demonstrate)
- Probability Table in book, p. 410-411 (old school)
- Other online app

The pnorm() function in R

The pnorm(z) function gives the area to the left of z in N(0,1)

- pnorm(1.54) = 0.9382
- ▶ 93.82% of the distribution has a value less than z = 1.54.
- The area to the right of 1.54 is 1-pnorm(1.54) = 0.0618

[1] 0.5291739

Why does pnorm(1.54)-pnorm(-0.23) do the trick?

- Subtracting two "areas to the left" leaves the area in between.
- ► So 52.92% of the dist'n is between -0.23 and 1.54.

Example: Finding proportions in N(0, 1).

We use R:

pnorm(1)-pnorm(-1)

[1] 0.6826895

The 68-95-99.7 Rule

In any normal distribution $N(\mu, \sigma)$:

- About 68% of the distribution is within 1 standard deviation of the mean.
- About 95% of the distribution is within 2 standard deviations of the mean.
- About 99.7% of the distribution is within 3 standard deviations of the mean.

Example: In *N*(10, 3),

- Roughly, 68% of the dist'n is between 7 and 13, and
- 95% of the dist'n is between 4 and 16, and
- ▶ 99.7% of the dist'n (almost all!) is between 1 and 19.

The 68-95-99.7 Rule

Upper Tail estimates

Upper Tail estimates

Example: Suppose the distribution of lengths of lumber labelled as 8 foot long 2x4s is normally distributed with $\mu = 7.98$ ft and $\sigma = 0.02$ ft.

- 1. The 68-95-99.7 rule tells us that essentially all boards sold will have length in a certain range. What is this range?
- 2. If I grab a board at random, what are the chances that it is actually 8 feet or longer?

Estimating areas

Solution

- 1. Nearly the entire distribution (99.7%) is within 3 standard deviations of the mean, meaning nearly every board has length in the range: $\mu 3\sigma$ to $\mu + 3\sigma$. So, nearly every "8 ft 2 by 4" has length in the range from 7.92 ft to 8.04 ft.
- 2. 8 ft is exactly 1 st dev above the mean, so there is about a 16% chance that a random board has length at least 8 ft.

The qnorm() function in R.

- The qnorm(A) function in R gives the z-value in N(0,1) that has area A to the left of it.
- So it works "backwards" from the pnorm() function:
 - pnorm(z) returns the area A to the left of z
 - qnorm(A) returns the z-value that has area A to the left of it.
- For instance, what value of z is greater than 90% of the standard normal distribution?

▶ So the area to the left of the *z*-value 1.28 equals 0.9.

Example with qnorm(A)

Find the value z in N(0,1) that has 20% of the distribution to the *right* of it.

Example with qnorm(A)

Solution 1

- ► Having 20% of the distribution to the right means having area .20 to the right, which means having area 1 - .20 = .80 to the left.
- Compute qnorm(.80), which is 0.8416212. So, the value $z \approx$ 0.84 has about 20% of the distribution to the right of it.

Solution 2

Compute -qnorm(.2), which is 0.8416212.

Why do these two approaches agree? Is it always true that qnorm(1-A) = -qnorm(A)?

The symmetry of the normal distribution

Useful fact For any value z, the area to the right of z equals the area to the left of -z. The two shaded areas are equal.

This tells us two things:

- 1. pnorm(-z)=1-pnorm(z)
- 2. qnorm(1-A)=-qnorm(A)

Other normal distributions $N(\mu, \sigma)$

Example Let X denote the wingspan of a monarch butterfly. Experience shows that the random variable X is approximately normal with mean $\mu = 3.5$ inches and standard deviation $\sigma = 0.3$ inches.

Q: What proportion of Monarch butterflies have wingspans greater than 4 inches? In other words, what is P(X > 4.0)?

Standardizing with Z-scores

If x is a value in $N(\mu, \sigma)$, its **Z**-score tells us how far away x is from μ in standard deviation units.

$$Z = \frac{x - \mu}{\sigma}$$

The Z-score of 4.0 in the butterfly wingspan distribution N(3.5, 0.3) is

$$Z = \frac{4.0 - 3.5}{0.3} \approx 1.667.$$

This shows that in N(3.5, 0.3) the value 4.0 is about 1.67 standard deviations away from the mean.

Standardizing with Z-scores

- We were asked to find the proportion of Monarch butterflies with wingspan greater than 4.0 inches.
- This proportion equals the area to the right of 4.0 in N(3.5, 0.3).
- This area equals the area to the right of 1.667 in N(0,1).
- That is,

$$P(X > 4.0) = P(Z > 1.667),$$

and we use R to find this proportion:

1-pnorm(1.667)

[1] 0.0477572

 About 4.8% of all Monarch butterflies have wingspan exceeding 4 inches. The pnorm() function for $N(\mu, \sigma)$

We can use pnorm() directly for any N(μ, σ), without first converting to Z-scores:

```
1-pnorm(4, mean=3.5, sd=0.3)
```

[1] 0.04779035

- About 4.8% of all Monarch butterflies have wingspan exceeding 4 inches.
- Having said that, it is often helpful to compute Z-scores for values in N(μ, σ), and we will continue to do so.

Example: Temperature in a kiln

- The temperature at any random location in a kiln used in the manufacture of bricks is normally distributed with mean 1050°F and standard deviation 50°F.
- That is, the temperature in the kiln follows the distribution N(1050, 50).
- If bricks are fired at a temperature above 1140°F, they will crack and must be thrown away.
- If the bricks are placed randomly throughout the kiln, what proportion of bricks will crack during the firing process?

Example: Temperature in a kiln

_

• We want to find
$$P(X > 1140)$$
.

First standardize with Z-scores:

$$P(X > 1140) = P\left(Z > \frac{1140 - 1050}{50}\right) = P(Z > 1.80).$$

$$0 \quad 1.8$$

$$N(1050,50) \qquad N(0,1)$$

Example: Temperature in a kiln

• We use R to find this proportion:

1-pnorm(1.8)

[1] 0.03593032

About 3.6% of the bricks will crack during the firing process.

Recall, the original question asked for the proportion of the N(1050, 50) greater than 1140, and this can be found directly in R:

1-pnorm(1140,mean=1050, sd=50)

[1] 0.03593032

Finding benchmark values in $N(\mu, \sigma)$.

Example: Test scores on a remarkably fun stats exam are approximately normal with $\mu = 82$, $\sigma = 7$. How high does one need to score on the exam so that 30% of the class had a lower score?

We want to find the value L so that P(X < L) = 0.30.

Solution:

1. Find the Z-score in N(0,1) that has area to the left = 0.30. This is z = qnorm(.3) = -0.5244005

Finding benchmark values in $N(\mu, \sigma)$.

Solution:

2. Find the value of L in N(82,7) that has Z-score = -0.524. To do this, solve this equation for L:

$$\frac{L-82}{7} = -0.524.$$

We multiply both sides by 7, then add 82 to both sides, to obtain:

$$L = 7 \cdot (-0.524) + 82 \approx 78.3.$$

Finding benchmark values in $N(\mu, \sigma)$.

Solution:

3. We have found that in N(82,7), 30% of the distribution will be less than L = 78.3.

4. In other words, 30% of the scores on this remarkably fun stats test will be less than 78.3.