Chapter 3: Probability

Math 140
Based on content in OpenIntro Stats, 4th Ed

Hitchman

Jan Term '23

Section 3.1: Defining Probability

Random Process

- Roll a 6 sided die.
- Measure a patient's systolic blood pressure.
- Record how long it takes you to run one mile.
- Record how many texts you send each day.

Random Process

- Roll a 6 sided die.
- Measure a patient's systolic blood pressure.
- Record how long it takes you to run one mile.
- Record how many texts you send each day.

These are examples of random processes, an event whose outcome is unknown ahead of time, but has a predictable set of possible outcomes.

Random Variable

- A random variable is a variable (commonly X) used to indicate an outcome of a random process if the outcomes are numerical.
- Perhaps X represents a patient's systolic blood pressure.
- As a health care provider, we want to check whether $X>140$ since values above 140 indicate hypertension.

Random Variable

- A random variable is a variable (commonly X) used to indicate an outcome of a random process if the outcomes are numerical.
- Perhaps X represents a patient's systolic blood pressure.
- As a health care provider, we want to check whether $X>140$ since values above 140 indicate hypertension.
- Or perhaps X represents my time running the mile.

Discrete vs Continuous Random Variables

- A discrete random variable that can only take numerical values with jumps.
- A continuous random variable is one that can take all values over an interval of numbers.

Example (Discrete or Continuous?)

- Roll a 6 sided die
- Measure this patient's systolic blood pressure
- Record how long it takes you to run one mile
- Record how many texts you send each day

Discrete vs Continuous Random Variables

- A discrete random variable that can only take numerical values with jumps.
- A continuous random variable is one that can take all values over an interval of numbers.

Example (Discrete or Continuous?)

- Roll a 6 sided die
- Measure this patient's systolic blood pressure
- Record how long it takes you to run one mile
- Record how many texts you send each day

ANSWER: The first and 4th are discrete. Blood pressure and mile time can be measured to as many decimals as the measuring instruments allow, so they are continuous.

Probability

Definition

The probability of an outcome in a random process is the proportion of times the outcome would occur if we observed the random process an infinite number of times.

Probability

Definition

The probability of an outcome in a random process is the proportion of times the outcome would occur if we observed the random process an infinite number of times.

Example (Rolling a fair 6 -sided die)

- It is reasonable to suppose each of the 6 numbers has the same chance of coming up.
- In the long run, when I roll many, many times, I would expect each number to come up about $1 / 6$ th of the time.
- That is, it is reasonable to suppose the probability of rolling any value is $1 / 6$.

Discrete vs Continuous Probabilities

- Probabilities associated to a discrete distribution can often be presented via a table, as we shall see
- Probabilities associated to a continuous distribution are often represented via a density curve, as we discuss in Section 4.1
- For the remainder of this chapter, we'll focus on discrete distributions

Simulation: Rolling a fair 6-sided die

Q: If I roll a fair, 6 -sided die, what is the probability that a 4 comes up?
We can approximate this probability with a simulation: Roll the die many, many times, recording each time whether we roll a 4. Also, as we go, we can record the proportion of rolls up to that point that have resulted in a 4:

- Results of first 10 rolls ('0' means not a 4, '1' means 4): 0001010010
- First 10 sample proportions: 0000.250 .20 .330 .290 .250 .330 .3
- A plot of the sample proportion up through 100,000 rolls

The Law of Large Numbers

Law of Large Numbers

As more observations are collected, the proportion \hat{p} of occurrences with a particular outcome converges to the probability p of that outcome.

- p - (theoretical) probability
- \hat{p} - the proportion of times a result occurs in a number of trials
- Law of Large Numbers says: As the number of trials gets larger and larger, $\hat{p} \rightarrow p$.

Probability Model: Rolling a fair 6-sided die

- Random Variable X. The variable we use to denote the values we can roll.
- Sample Space $\{1,2,3,4,5,6\}$. The set of possible outcomes.
- Probability Model. A description of the probabilities associated to the values in the sample space.

X	1	2	3	4	5	6
$P(X)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

Rules for Probability Distributions

Probability Distribution

A probability distribution is a list of the possible outcomes with corresponding probabilities that satisfies three rules:
(1) The outcomes listed in the sample space must be disjoint.
(2) Each probability must be between 0 and 1 .
(0) The probabilities must total 1 .

Probability Notation and Terms

Suppose X is a random variable with sample space S.

- $P(X=a)$ and $P(a)$ denote the probability that item a in the sample space occurs.
- If A is a subset of the sample space, we call A an event,
- $P(A)$ denotes the probability that an outcome in the subset A occurs.
- A^{c} is called the complement of A. It consists of all values in the sample space that are not in A.
- Two events A and B are disjoint, or mutually exclusive, if they cannot both happen - they have no outcomes in common.

Example: Rolling a fair 6-sided Die

- Sample space is $S=\{1,2,3,4,5,6\}$.
- $P(a)=1 / 6$ for each value in the sample space.
- Let A denote the event that I roll an even number. Then

$$
P(A)=P(2 \text { or } 4 \text { or } 6)=1 / 6+1 / 6+1 / 6=1 / 2 .
$$

- Let B denote the event that I roll a 1 or a 2 . Then $P(B)=1 / 3$.
- A and B are not disjoint events since they have an outcome in common (the outcome of rolling a 2).
- B^{c} is the event that I roll a $3,4,5$, or 6 , and $P\left(B^{c}\right)=4 / 6=2 / 3$.

Probability Summation Rules

Two Handy Properties of Probability

- $P\left(A^{c}\right)=1-P(A)$.
- If A and B are disjoint events then $P(A$ or $B)=P(A)+P(B)$.

Example

- If the probability that it rains today is 0.3 , then the probability that it doesn't rain is 0.7 .
- If X denotes the result of rolling a fair 6 -sided die, then

$$
P(X=2 \text { or } 4)=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3} .
$$

Funny Dice

Example (A strange die)

Here is most of the probability model for a strange die.
(1) What must the probability be of rolling a 3 ?
(2) If I roll this strange die 10,000 times, which is more likely, rolling a 4 , or rolling a number less than 4 ?

X	1	2	3	4	5	6
$P(X)$	0.1	0.1		0.5	0.1	0.2

Funny Dice

Example (A strange die)

Here is most of the probability model for a strange die.
(1) What must the probability be of rolling a 3 ?
(2) If I roll this strange die 10,000 times, which is more likely, rolling a 4 , or rolling a number less than 4 ?

X	1	2	3	4	5	6
$P(X)$	0.1	0.1		0.5	0.1	0.2

ANSWERS:
(1) $P(3)=0$ since the other probabilities already sum to 1 .
(2) In 10,000 rolls I would expect about $5,0004 \mathrm{~s}$. On the other hand, I should expect about 2,000 rolls to give a value less than 4 (about $1,0001 \mathrm{~s}$, $1,0002 \mathrm{~s}$, and 03 s). Rolling a 4 seems much more likely than rolling a number less than 4 .

Independence

Definition

Two processes are independent if knowing the outcome of one provides no useful information about the outcome of the other.

Activity: Random Phones

Scene

After class I find 4 phones in the classroom. The next day I randomly return the 4 phones to the 4 students who misplaced them. What is the probability that all 4 students get their own phone back?

Three Strange Dice

Scene

You have 3 dice on a table. You and a friend will each roll one of them. Whoever rolls the higher number wins.

- blue die: 1, 1, 4, 4, 4, 4.
- red die: $2,2,2,2,5,5$.
- purple die: $3,3,3,3,3,6$.

Which die should you choose to roll?

