Section 8.4 Inference for Linear Regression Based on content in OpenIntro Stats, 4th Ed

ロ・ (月) (日) (日) 日 りくや

Gear up for Inference

- Inference in this class has been about this: Make a decision about a parameter based on a test statistic generated from good data.
- Inference for linear regression is about this too.
- We assume two variables x and y have a linear association plus some noise:

$$y = \beta_0 + \beta_1 x + \epsilon.$$

- In this theoretical description, β₀ and β₁ are parameters, a sort of theoretical y-intercept (β₀) and theoretical slope (β₁) describing the association.
- We make a decision about β₁ by gathering data, generating a test statistic, and analyzing it (finding a p-value).

Nature or nurture?

In 1966 Cyril Burt published a paper called "The genetic determination of differences in intelligence: A study of monozygotic twins reared together and apart". The data consist of IQ scores for [an assumed random sample of] 27 identical twins, one raised by foster parents, the other by the biological parents.

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

Which of the following is <u>false</u>?

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.20760	9.29990	0.990	0.332
bioIQ	0.90144	0.09633	9.358	1.2e-09

Residual standard error: 7.729 on 25 degrees of freedom Multiple R-squared: 0.7779,Adjusted R-squared: 0.769 F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09

- (a) Additional 10 points in the biological twin's IQ is associated with additional 9 points in the foster twin's IQ, on average.
- (b) Roughly 78% of the foster twins' IQs can be accurately predicted by the model.
- (c) The linear model is $\widehat{fosterIQ} = 9.2 + 0.9 \times bioIQ$.
- (d) Foster twins with IQs higher than average IQs tend to have biological twins with higher than average IQs as well.

Which of the following is <u>false</u>?

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.20760	9.29990	0.990	0.332
bioIQ	0.90144	0.09633	9.358	1.2e-09

Residual standard error: 7.729 on 25 degrees of freedom Multiple R-squared: 0.7779,Adjusted R-squared: 0.769 F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09

- (a) Additional 10 points in the biological twin's IQ is associated with additional 9 points in the foster twin's IQ, on average.
- (b) Roughly 78% of the foster twins' IQs can be accurately predicted by the model.
- (c) The linear model is $\widehat{fosterIQ} = 9.2 + 0.9 \times bioIQ$.
- (d) Foster twins with IQs higher than average IQs tend to have biological twins with higher than average IQs as well.

Testing for the slope

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?

(a)
$$H_0: b_0 = 0; H_A: b_0 \neq 0$$

(b) $H_0: \beta_0 = 0; H_A: \beta_0 \neq 0$
(c) $H_0: b_1 = 0; H_A: b_1 \neq 0$
(d) $H_0: \beta_1 = 0; H_A: \beta_1 \neq 0$

Testing for the slope

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(a)
$$H_0: b_0 = 0; H_A: b_0 \neq 0$$

(b) $H_0: \beta_0 = 0; H_A: \beta_0 \neq 0$
(c) $H_0: b_1 = 0; H_A: b_1 \neq 0$

(d) $H_0: \beta_1 = 0; H_A: \beta_1 \neq 0$

Chapter 8: Regression

Inference for linear regression

Understanding regression output from software

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

Chapter 8: Regression

Inference for linear regression

Understanding regression output from software

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

▶ We always use a *t*-test in inference for regression.

Chapter 8: Regression

Inference for linear regression

Understanding regression output from software

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

▶ We always use a *t*-test in inference for regression.

Remember: Test statistic, $T = \frac{point \ estimate - null \ value}{SE}$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▶ We always use a *t*-test in inference for regression.

Remember: Test statistic, $T = \frac{point \ estimate - null \ value}{SE}$

• Point estimate = b_1 , the observed slope.

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

We always use a *t*-test in inference for regression. Remember: Test statistic, $T = \frac{point \ estimate - null \ value}{cr}$

• Point estimate = b_1 , the observed slope.

SE_{b1} is the standard error associated with the slope (given in the table!)

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

We always use a *t*-test in inference for regression. Remember: Test statistic, T = point estimate - null value SE

- Point estimate = b_1 , the observed slope.
- SE_{b1} is the standard error associated with the slope (given in the table!)
- ▶ Degrees of freedom associated with the slope is df = n 2, where *n* is the sample size.

(We lose 1 degree of freedom for each parameter we estimate, and in simple linear regression we estimate 2 parameters, β_0 and β_1 .)

Understanding regression output from software

Testing for the slope (cont.)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

$$T = \frac{0.9014 - 0}{0.0963} = 9.36$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Understanding regression output from software

Testing for the slope (cont.)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

$$T = \frac{0.9014 - 0}{0.0963} = 9.36$$

df = 27 - 2 = 25

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Understanding regression output from software

Testing for the slope (cont.)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

$$T = \frac{0.9014 - 0}{0.0963} = 9.36$$

df = 27 - 2 = 25
$$p - value = P(|T| > 9.36) < 0.01$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

In fact, p-value is:

> 2*(1-pt(9.36,25)) [1] 1.197331e-09

% College graduate vs. % Hispanic in LA

Q: What can you say about the relationship between % college graduate and % Hispanic in a sample of 100 zip code areas in LA?

Understanding regression output from software

% College educated vs. % Hispanic in LA - another look

Q: What can you say about the relationship between of % college graduate and % Hispanic in a sample of 100 zip code areas in LA?

% Hispanic

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Which of the below is the best interpretation of the slope?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
%Hispanic	-0.7527	0.0501	-15.01	0.0000

- (a) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 75% decrease in % of college grads.
- (b) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 0.75% decrease in % of college grads.
- (c) An additional 1% of Hispanic residents decreases the % of college graduates in a zip code area in LA by 0.75%.
- (d) In zip code areas with no Hispanic residents, % of college graduates is expected to be 75%.

Which of the below is the best interpretation of the slope?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
%Hispanic	-0.7527	0.0501	-15.01	0.0000

- (a) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 75% decrease in % of college grads.
- (b) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 0.75% decrease in % of college grads.
- (c) An additional 1% of Hispanic residents decreases the % of college graduates in a zip code area in LA by 0.75%.
- (d) In zip code areas with no Hispanic residents, % of college graduates is expected to be 75%.

Q: Do these data provide convincing evidence that there is a statistically significant relationship between % Hispanic and % college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Q: How reliable is this p-value if these zip code areas are not randomly selected?

Q: Do these data provide convincing evidence that there is a statistically significant relationship between % Hispanic and % college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Yes, the p-value for % Hispanic is low, indicating that the data provide convincing evidence that the slope parameter is different than 0.

Q: How reliable is this p-value if these zip code areas are not randomly selected?

Q: Do these data provide convincing evidence that there is a statistically significant relationship between % Hispanic and % college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Yes, the p-value for % Hispanic is low, indicating that the data provide convincing evidence that the slope parameter is different than 0.

Q: How reliable is this p-value if these zip code areas are not randomly selected? *Not very...*

Remember that a confidence interval is calculated as *point estimate* $\pm ME$ and the degrees of freedom associated with the slope in a simple linear regression is n-2. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- (a) $9.2076 \pm 1.65 \times 9.2999$
- (b) $0.9014 \pm 2.06 \times 0.0963$
- (c) $0.9014 \pm 1.96 \times 0.0963$
- (d) $9.2076 \pm 1.96 \times 0.0963$

Remember that a confidence interval is calculated as *point estimate* $\pm ME$ and the degrees of freedom associated with the slope in a simple linear regression is n-2. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

n = 27 df = 27 - 2 = 25

A D N A 目 N A E N A E N A B N A C N

- (a) $9.2076 \pm 1.65 \times 9.2999$
- (b) $0.9014 \pm 2.06 \times 0.0963$
- (c) $0.9014 \pm 1.96 \times 0.0963$
- (d) $9.2076 \pm 1.96 \times 0.0963$

Remember that a confidence interval is calculated as *point estimate* $\pm ME$ and the degrees of freedom associated with the slope in a simple linear regression is n-2. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

 $95\%: t_{25}^{\star} = 2.06$

n = 27 df = 27 - 2 = 25

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- (a) $9.2076 \pm 1.65 \times 9.2999$
- (b) $0.9014 \pm 2.06 \times 0.0963$
- (c) $0.9014 \pm 1.96 \times 0.0963$
- (d) $9.2076 \pm 1.96 \times 0.0963$

Remember that a confidence interval is calculated as *point estimate* $\pm ME$ and the degrees of freedom associated with the slope in a simple linear regression is n-2. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- (a) $9.2076 \pm 1.65 \times 9.2999$ (b) $0.9014 \pm 2.06 \times 0.0963$
- (c) $0.9014 \pm 1.96 \times 0.0963$

(d) $9.2076 \pm 1.96 \times 0.0963$

 $n = 27 \qquad df = 27 - 2 = 25$ 95%: $t_{25}^* = 2.06$ 0.9014 $\pm 2.06 \times 0.0963$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Remember that a confidence interval is calculated as *point estimate* $\pm ME$ and the degrees of freedom associated with the slope in a simple linear regression is n-2. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

(a) $9.2076 \pm 1.65 \times 9.2999$ (b) $0.9014 \pm 2.06 \times 0.0963$ (c) $0.9014 \pm 1.96 \times 0.0963$ (d) $9.2076 \pm 1.96 \times 0.0963$

 $\begin{array}{rcl} n & = & 27 & df = 27 - 2 = 25 \\ 95\%: \ t_{25}^{\star} & = & 2.06 \\ 0.9014 & \pm & 2.06 \times 0.0963 \\ (0.7 & , & 1.1) \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Recap

- ▶ Inference for the slope for a single-predictor linear regression model:
 - Hypothesis test:

$$T = \frac{b_1 - null \text{ value}}{SE_{b_1}} \qquad df = n - 2$$

Confidence interval:

$$b_1 \pm t^{\star}_{df=n-2}SE_{b_1}$$

- The null value is often 0 since we are usually checking for any relationship between the explanatory and the response variable.
- The regression output gives b₁, SE_{b1}, and two-tailed p-value for the t-test for the slope where the null value is 0.
- We rarely do inference on the intercept, so we'll be focusing on the estimates and inference for the slope.

Caution

Always be aware of the type of data you're working with: random sample, non-random sample, or population.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Caution

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Caution

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.
- If you have a sample that is non-random (biased), inference on the results will be unreliable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Caution

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.
- If you have a sample that is non-random (biased), inference on the results will be unreliable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The ultimate goal is to have independent observations.