Section 8.4

Inference for Linear Regression Based on content in OpenIntro Stats, 4th Ed

Gear up for Inference

- Inference in this class has been about this: Make a decision about a parameter based on a test statistic generated from good data.
- Inference for linear regression is about this too.
- We assume two variables x and y have a linear association plus some noise:

$$
y=\beta_{0}+\beta_{1} x+\epsilon .
$$

- In this theoretical description, β_{0} and β_{1} are parameters, a sort of theoretical y-intercept (β_{0}) and theoretical slope (β_{1}) describing the association.
- We make a decision about β_{1} by gathering data, generating a test statistic, and analyzing it (finding a p-value).

Nature or nurture?

In 1966 Cyril Burt published a paper called "The genetic determination of differences in intelligence: A study of monozygotic twins reared together and apart". The data consist of IQ scores for [an assumed random sample of] 27 identical twins, one raised by foster parents, the other by the biological parents.

Which of the following is false?

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$		
(Intercept)	9.20760	9.29990	0.990	0.332
bioIQ	0.90144	0.09633	9.358	$1.2 e-09$
Residual standard error: 7.729 on 25 degrees of freedom				
Multiple R-squared: 0.7779 , Adjusted R-squared: 0.769				
F-statistic: 87.56 on 1 and 25 DF, p-value: $1.204 e-09$				

(a) Additional 10 points in the biological twin's IQ is associated with additional 9 points in the foster twin's IQ, on average.
(b) Roughly 78% of the foster twins' IQs can be accurately predicted by the model.
(c) The linear model is fosterlQ$=9.2+0.9 \times$ biolQ.
(d) Foster twins with IQs higher than average IQs tend to have biological twins with higher than average IQs as well.

Which of the following is false?

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$		
(Intercept)	9.20760	9.29990	0.990	0.332
bioIQ	0.90144	0.09633	9.358	$1.2 e-09$
Residual standard error: 7.729 on 25 degrees of freedom				
Multiple R-squared: 0.7779 , Adjusted R-squared: 0.769				
F-statistic: 87.56 on 1 and $25 \mathrm{DF}, \mathrm{p}$-value: $1.204 \mathrm{e}-09$				

(a) Additional 10 points in the biological twin's IQ is associated with additional 9 points in the foster twin's IQ, on average.
(b) Roughly 78% of the foster twins' IQs can be accurately predicted by the model.
(c) The linear model is fosterl $Q=9.2+0.9 \times$ biol Q.
(d) Foster twins with IQs higher than average IQs tend to have biological twins with higher than average IQs as well.

Testing for the slope

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?
(a) $H_{0}: b_{0}=0 ; H_{A}: b_{0} \neq 0$
(b) $H_{0}: \beta_{0}=0 ; H_{A}: \beta_{0} \neq 0$
(c) $H_{0}: b_{1}=0 ; H_{A}: b_{1} \neq 0$
(d) $H_{0}: \beta_{1}=0 ; H_{A}: \beta_{1} \neq 0$

Testing for the slope

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?
(a) $H_{0}: b_{0}=0 ; H_{A}: b_{0} \neq 0$
(b) $H_{0}: \beta_{0}=0 ; H_{A}: \beta_{0} \neq 0$
(c) $H_{0}: b_{1}=0 ; H_{A}: b_{1} \neq 0$
(d) $H_{0}: \beta_{1}=0 ; H_{A}: \beta_{1} \neq 0$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Remember: Test statistic, $T=\frac{\text { point estimate-null value }}{S E}$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Remember: Test statistic, $T=\frac{\text { point estimate-null value }}{S E}$

- Point estimate $=b_{1}$, the observed slope.

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Remember: Test statistic, $T=\frac{\text { point estimate-null value }}{S E}$

- Point estimate $=b_{1}$, the observed slope.
- $S E_{b_{1}}$ is the standard error associated with the slope (given in the table!)

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Remember: Test statistic, $T=\frac{\text { point estimate-null value }}{S E}$

- Point estimate $=b_{1}$, the observed slope.
$-S E_{b_{1}}$ is the standard error associated with the slope (given in the table!)
- Degrees of freedom associated with the slope is $d f=n-2$, where n is the sample size.
(We lose 1 degree of freedom for each parameter we estimate, and in simple linear regression we estimate 2 parameters, β_{0} and β_{1}.)

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

$$
T=\frac{0.9014-0}{0.0963}=9.36
$$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

$$
\begin{aligned}
T & =\frac{0.9014-0}{0.0963}=9.36 \\
d f & =27-2=25
\end{aligned}
$$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

$$
\begin{aligned}
T & =\frac{0.9014-0}{0.0963}=9.36 \\
d f & =27-2=25 \\
p-\text { value } & =P(|T|>9.36)<0.01
\end{aligned}
$$

In fact, p-value is:
> $2 *(1-\mathrm{pt}(9.36,25))$
[1] 1.197331e-09

\% College graduate vs. \% Hispanic in LA

Q: What can you say about the relationship between \% college graduate and \% Hispanic in a sample of 100 zip code areas in LA?

Education: College graduate

\% College educated vs. \% Hispanic in LA - another look
Q: What can you say about the relationship between of \% college graduate and \% Hispanic in a sample of 100 zip code areas in LA?

\% College educated vs. \% Hispanic in LA - linear model

Which of the below is the best interpretation of the slope?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	0.7290	0.0308	23.68	0.0000
\%Hispanic	-0.7527	0.0501	-15.01	0.0000

(a) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 75% decrease in \% of college grads.
(b) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 0.75% decrease in $\%$ of college grads.
(c) An additional 1% of Hispanic residents decreases the $\%$ of college graduates in a zip code area in LA by 0.75%.
(d) In zip code areas with no Hispanic residents, \% of college graduates is expected to be 75%.

\% College educated vs. \% Hispanic in LA - linear model

Which of the below is the best interpretation of the slope?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	0.7290	0.0308	23.68	0.0000
\%Hispanic	-0.7527	0.0501	-15.01	0.0000

(a) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 75% decrease in $\%$ of college grads.
(b) A 1\% increase in Hispanic residents in a zip code area in LA is associated with a 0.75% decrease in \% of college grads.
(c) An additional 1% of Hispanic residents decreases the $\%$ of college graduates in a zip code area in LA by 0.75%.
(d) In zip code areas with no Hispanic residents, \% of college graduates is expected to be 75%.

\% College educated vs. \% Hispanic in LA - linear model

Q: Do these data provide convincing evidence that there is a statistically significant relationship between \% Hispanic and \% college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Q: How reliable is this p-value if these zip code areas are not randomly selected?

\% College educated vs. \% Hispanic in LA - linear model

Q: Do these data provide convincing evidence that there is a statistically significant relationship between \% Hispanic and \% college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Yes, the p-value for \% Hispanic is low, indicating that the data provide convincing evidence that the slope parameter is different than 0.

Q: How reliable is this p-value if these zip code areas are not randomly selected?

\% College educated vs. \% Hispanic in LA - linear model

Q: Do these data provide convincing evidence that there is a statistically significant relationship between \% Hispanic and \% college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Yes, the p-value for \% Hispanic is low, indicating that the data provide convincing evidence that the slope parameter is different than 0.

Q: How reliable is this p-value if these zip code areas are not randomly selected? Not very...

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate $\pm M E$ and the degrees of freedom associated with the slope in a simple linear regression is $n-2$. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

(a) $9.2076 \pm 1.65 \times 9.2999$
(b) $0.9014 \pm 2.06 \times 0.0963$
(c) $0.9014 \pm 1.96 \times 0.0963$
(d) $9.2076 \pm 1.96 \times 0.0963$

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate $\pm M E$ and the degrees of freedom associated with the slope in a simple linear regression is $n-2$. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

(a) $9.2076 \pm 1.65 \times 9.2999$
(b) $0.9014 \pm 2.06 \times 0.0963$
(c) $0.9014 \pm 1.96 \times 0.0963$
(d) $9.2076 \pm 1.96 \times 0.0963$

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate $\pm M E$ and the degrees of freedom associated with the slope in a simple linear regression is $n-2$. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

(a) $9.2076 \pm 1.65 \times 9.2999$
(b) $0.9014 \pm 2.06 \times 0.0963$
$n=27 \quad d f=27-2=25$
(c) $0.9014 \pm 1.96 \times 0.0963$
(d) $9.2076 \pm 1.96 \times 0.0963$

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate $\pm M E$ and the degrees of freedom associated with the slope in a simple linear regression is $n-2$. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

(a) $9.2076 \pm 1.65 \times 9.2999$
(b) $0.9014 \pm 2.06 \times 0.0963$
(c) $0.9014 \pm 1.96 \times 0.0963$

$$
\begin{aligned}
n & =27 \quad d f=27-2=25 \\
95 \%: t_{25}^{\star} & =2.06 \\
0.9014 & \pm 2.06 \times 0.0963
\end{aligned}
$$

(d) $9.2076 \pm 1.96 \times 0.0963$

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate $\pm M E$ and the degrees of freedom associated with the slope in a simple linear regression is $n-2$. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

(a) $9.2076 \pm 1.65 \times 9.2999$
(b) $0.9014 \pm 2.06 \times 0.0963$
(c) $0.9014 \pm 1.96 \times 0.0963$
(d) $9.2076 \pm 1.96 \times 0.0963$

$$
\begin{aligned}
n & =27 \quad d f=27-2=25 \\
95 \%: t_{25}^{\star} & =2.06 \\
0.9014 & \pm 2.06 \times 0.0963 \\
(0.7 & , 1.1)
\end{aligned}
$$

Recap

- Inference for the slope for a single-predictor linear regression model:
- Hypothesis test:

$$
T=\frac{b_{1}-n u l l \text { value }}{S E_{b_{1}}} \quad d f=n-2
$$

- Confidence interval:

$$
b_{1} \pm t_{d f=n-2}^{\star} S E_{b_{1}}
$$

- The null value is often 0 since we are usually checking for any relationship between the explanatory and the response variable.
- The regression output gives $b_{1}, S E_{b_{1}}$, and two-tailed p -value for the t-test for the slope where the null value is 0 .
- We rarely do inference on the intercept, so we'll be focusing on the estimates and inference for the slope.

Caution

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.

Caution

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.

Caution

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.
- If you have a sample that is non-random (biased), inference on the results will be unreliable.

Caution

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.
- If you have a sample that is non-random (biased), inference on the results will be unreliable.
- The ultimate goal is to have independent observations.

