\usepackage{amsmath, amssymb} \usepackage{geometry} \usepackage{ifthen} \usepackage{ifxetex,ifluatex} \usepackage{graphicx} \usepackage{tikz} \usepackage{mathtools} \usepackage{tkz-euclide} \usetikzlibrary{calc} \usetkzobj{all} \usepackage{pgfplots} %\pgfplotsset{compat=1.10} \pgfkeys{/pgf/declare function={arccosh(\x) = ln(\x + sqrt(\x^2-1));}} \tikzset{->-/.style={decoration={ markings, mark=at position #1 with {\arrow{>}}},postaction={decorate}}} \tikzset{ arrowMe/.style={postaction=decorate, decoration={markings, mark=at position .8 with {\arrow[thick]{#1}} } }} \newcommand{\hypsegment}[4]{ \tkzDefPointBy[inversion = center #3 through #4](#1) \tkzGetPoint{p*} \tkzCircumCenter(#1,#2,p*)\tkzGetPoint{c} \tkzDrawArc[color=black](c,#1)(#2) } \newcommand{\hyperpbisector}[4]{ \tkzDefPointBy[inversion = center #3 through #4](#1) \tkzGetPoint{p*} \tkzCircumCenter(#1,#2,p*)\tkzGetPoint{c} \tkzTangent[at=#2](c)\tkzGetPoint{hp} \tkzInterLL(#2,hp)(#3,#1) \tkzGetPoint{cp} \tkzDefPointBy[inversion = center #3 through #4](#2) \tkzGetPoint{q*} \tkzTangent[at=#1](c)\tkzGetPoint{hq} \tkzInterLL(#1,hq)(#3,#2) \tkzGetPoint{cq} \tkzInterCC(cq,#1)(cp,#2) \tkzGetPoints{u}{v} \tkzClipCircle(#3,#4) \tkzDrawCircle[color=red,orthogonal through=u and v](#3,#4) } \newcommand{\typeIIcline}[4][]{%%% the type II cline of (#2) and (#3) through (#4) \tkzCircumCenter(#2,#3,#4)\tkzGetPoint{o} \tkzDefLine[perpendicular=through #4,K=1](o,#4)\tkzGetPoint{w}; \tkzInterLL(#4,w)(#2,#3)\tkzGetPoint{c} \tkzDrawCircle[#1](c,#4) } \newcommand{\arcThroughThreePoints}[4][]{%%%the arc from #2 to #4 through #3 \tkzCircumCenter(#2,#3,#4)\tkzGetPoint{c} \tkzDrawArc[#1](c,#2)(#4) }