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Abstract

Over the years, alert students have noticed that 8 seems to appear
in my classes more often than chance would allow. Occasionally in such
moments I am stirred to re�ect on the greatness of 8 with my charges.
So I continue to be surprised when these students ask, �What's so great
about 8?� And I think, �Isn't it clear?� Alas, so many times has this
question been asked that it has become apparent the story of 8 needs
retelling.

A portion of this story appeared in [5], and The Story of 8 can be
found online at mphitchman.com/eight.

1 An Introduction to 8

The goddess of fame has smiled upon some numbers, leaving others to a life of
toil and anonymity. Take π. So much has been written about Mr. 3.1415...8...
. Much of its allure, no doubt, comes from the fact that π �arises naturally.�
School kids, some of them not yet eight, are taught that if you divde the
circumference of any circle by its diameter you get π. At some point, these
same kids are asked to worship the fact that the area enclosed by a circle having
radius one foot is π square feet, on the nose. But are these kids taught that if
you take two circles, each having radius 2√

π
feet, and you place them one just

resting on top of the other so that they form an 8, then the total area enclosed
by both circles is 8 square feet on the nose?

Other stars in the number world include e, i, φ = 1+
√
5

2 , and 0. Zero! Why
not 8? Sure, celebrations of the Golden Ratio φ are fun. It's cute to see it
pop up in pleasing architecture, art, and seashells, but has anyone pointed
out to you that φ's building block integers, 1, 5, and 2, sum to 8? Is this a
coincidence? I don't think so. And isn't 8 foundational to the product of π
and e: bπ · ec = 8? And isn't 0 just 8 without its belt?

One hears whispers of a conspiracy to keep 8 in the shadows. Consider the
base 10 number system that has been thrust upon us, even though base 8 has
clear advantages. For instance, the diabolical number 666 would be written
in base 8 as a harmless and pleasing 1232, practically a kid's song waiting
to happen. Consider Urbain Le Verrier's discovery of Neptune in 1845 (using
mathematics, not a telescope) which gave us an eighth planet in our solar
system. This incited a mad dash to �nd another planet, presumably because
8 just wouldn't do. Of course, this led to the regrettable classi�cation of Pluto
as a planet, an error we corrected just a few years ago.



But 8 has its champions. I recently spoke with Alan Moby, secretary of
Gather Renown for 8 (GR8), a new organization that is working to promote
eight to its rightful place among the world's most famous numbers. I asked
about the GR8 campaign to get eight added to the equation eπi+1 = 0. Moby
said, �GR8 has worked tirelessly to assemble the key numbers in a way that
ensures equality, and we couldn't be more pleased with the result. We now have
the world's greatest numbers joined in one superstar equation. Behold!�

e8πi − 1 = 0.

Is eight's inclusion in this equation deserved? What follows is a brief,
objective tour of 8 through the ages. I invite the reader to weigh the evidence
before agreeing that 8 clearly belongs in this superstar equation.

2 Ancient 8

At the dawn of civilization, 8 was a little known integer, nestled between 7
and 9. It led a quiet life, occasionally making itself useful to hunters as they
checked their digits after run-ins with mastodons and rival clans. The oldest
known joke involving 8 begins with a concussed cave man whose rival Thok
stands before him, arms raised. Thok asks him how many �ngers he's holding
up. The groggy man furrows his great brow and answers 10, whereupon Thok
says, �No. Eight. These are thumbs!� which he wiggles and then pokes into
the poor man's eyes.

All joking aside, numbers began to be studied in earnest in many ancient
civilizations, perhaps nowhere more seriously than in Greece. Around 500
B.C., the Greek philosopher Pythagoras and his disciples vigorously studied
the counting numbers (1,2,3,...). By making careful observations it appeared to
them that the workings of the universe could be understood via these numbers.

Perhaps inevitably, the Pythagoreans began to ascribe particular qualities
to the counting numbers. Odd numbers were considered female, the even num-
bers male. The number 10 gained special prominence among the Pythagoreans
because of the fact (coincidence, let's face it) that 1 + 2 + 3 + 4 = 10.

But the Pythagoreans are best known for thrusting a di�erent number
onto the world stage, and they did so by the tried and true method of trying
to suppress it. Imagine the scandal that ensued on a particularly �ne fall day
on the island of Samos about 2500 years ago...

A pleasant breeze blew in from the Aegean Sea as Pythagoras air-dried after
a morning swim. A young Pythagorean waited respectfully for the master to
�nish his morning routine before approaching. As great as Pythagoras was,
he welcomed young and old, man and woman, to approach with questions.
He encouraged communal thought and dialogue. After his swim, of course.
And who could argue with the results? His school had established the basic
tools with which one could explain everything in the universe: the counting
numbers.

The young philosopher spoke: �Good morning, sir. How was your swim?�
�Invigorating. I believe I swam for �ve thirds of one hour. A �ne ratio.�
�Indeed, sir. And I have been waiting to speak to you for four hours. I

believe this makes our meeting auspicious.�
�Auspicious?�
�Because of your theorem, sir.�
�Ah.�
�Because 32 + 42 = 52, sir.�
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�Yes. Well, what is it, young man?�
�I just love your triangle theorem, sir.�
�It is a theorem for us all.�
�Of course, sir. But it rightfully bears your name. The Pythagorean The-

orem. That will endure to the end of time.�
�As all truths will. Your question?�
�Yes. I have two sticks here. Notice they are the same length. Let me place

them on the ground at right angles to each other with their tips touching. How
far apart are their ends?�

�But you know the answer, by the theorem about which you spoke. It will
be the number c such that c2 = 12 + 12, if we assume the length of each stick
is 1 unit.�

�Yes, but what value does c assume? I'm afraid it may not be a ratio of
counting numbers.�

Did Pythagoras laugh heartily at this remark? Or did a kernel of fear take
root in his stomach? History does not record his initial reaction. One wonders
whether he instantly intuited the toppling of a central tenant of his school of
thought at the hands of his own theorem. It is true that the value of c, which
today we denote as

√
2, is not expressible as the ratio of counting numbers,

and the Pythagoreans proved it by contradiction, thus giving the world one of
the �rst and most famous uses of this proof technique.

The Pythagoreans also o�er the �rst known e�ort to suppress a number's
greatness. That a quantity physically constructed could not be represented as
a ratio of whole numbers was a devastating result to them, one which may have
precipitated the murder of an individual who let slip this fact to the outside
world. But that's a story for another time. For all these reasons

√
2 appears

on most top 10 lists for the all time great numbers. But is it greater than 8?
Not a chance!

The Pythagoreans may not have done much for 8 directly beyond giving it
the dubious distinction of being male, but they did introduce to the world the
idea that some numbers are more dangerous than others. Numbers, up to the
time of Pythagoras, were viewed for their quantity. Now they were encouraged
to assert their quality ; 8 could begin in earnest its ascent to a position of
dominance in the number line. It did not take long.

3 Medieval 8

Shortly after Pythagoras enjoyed his daily swims, mathematicians in India
developed the place value number system that we use today, a system in which
the quality of 8 shines. Although the ancient Greeks unearthed true gems
of mathematical beauty, they represented numbers geometrically. The place
value number system of India represented an important shift in the way we
think about and manipulate numbers. This system found its way to Europe
in medieval times, thanks to Islamic mathematicians. In 1202 A.D., in what is
present day Italy, a young man named Leonardo of Pisa published Liber Abaci,
a textbook on arithmetic. Chapter 1 opens with this sentence (see [6],p.102):

These are the nine �gures of the Indians: 9 8 7 6 5 4 3 2 1. With
these nine �gures, and with the sign 0 which in Arabic is called
zephirum, any number can be written, as will below be demon-
strated.

The author, better known to the world today as Fibonacci, went on to
demonstrate basic arithmetical operations using these numerals and to include
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exercises involving rabbits, as all good texts must. The most famous problem
in the book asks:

How many pairs of rabbits will be produced each month, beginning
with a single pair, if every month each productive pair bears a new
pair which becomes productive from the second month on?

This question yielded the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34,... .
Yes, 8 is a Fibonacci number, a feather in any number's cap. What separates
8 from the others is its position in the list. It is the 6th term, and 8-6 is 2,
and 2 is a prime factor of 8. No other Fibonacci number has this distinction.
That is, if we let Fn denote the nth Fibonacci number and de�ne the set

A = {Fn | Fn − n is a prime factor of Fn},

then A = {8}.
8's title as the most interesting Fibonacci number was reinforced by the dis-

covery in 1888 of the Chiquimula Chocolate Bar Scroll, which scholars believe
was written in the 13th century. Translated, it reads:

Let a bar of chocolate be found simultaneously by �ve strangers,
and let the bar consist of 10 squares, in the natural way, arranged
in two rows of �ve. The strangers agree that each ought to receive
2 squares, and that their 2 squares be of one piece, whole, and
unbroken. In how many ways might they distribute the treasure so
as to avoid bloodshed?

Today we recognize that this question is equivalent to �nding the number
of tilings of a 2 × 5 grid by dominoes, and that the answer is 8 because, in
general, the 2× n grid has Fn+1 tilings by dominoes.

Figure 3.1: The 2× 5 grid has 8 tilings by dominoes.

4 Revolutionary 8

We turn our attention now to the scienti�c revolution. While 8 entered this
enlightened time admired by bunny lovers and chocolate a�cionados with a
penchant for gathering in groups of �ve, it had not yet joined the ranks of the
truly great numbers. But that was about to change, in large part due to its
collaboration with two giants of the age: Isaac Newton and Leonhard Euler.

No one embodies the scienti�c revolution more than Sir Isaac Newton. New-
ton was born on Christmas Day in 1642, two months after his father died. He
survived a premature birth and the plague, no small feat in mid 17th century
England. Indeed, in 1665 Cambridge colleges closed their doors due to an out-
break of plague. Sent home, where he had no access to the internet, Newton
experienced his anni mirabilis, 20 miraculous months of intense creativity dur-
ing which he formulated the key ideas of all his major discoveries: gravitation,
optics, and, central to our story today, the calculus.

In calculus one investigates change, typically of some process over smaller
and smaller intervals. As such, very small, nebulous positive quantities such
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as ∆x and ∆y came to steal the spotlight from many larger numbers such as
three. How did 8 manage in this age of in�nitesimals? By standing on the
shoulders of many tiny numbers, as we shall see.

Newton was an astute observer of the natural world, although he occasion-
ally sat beneath over-ripe apples with little regard for his personal safety. For
instance, in his youth he put forth a serious e�ort to quantify his happiness. He
even developed a unit of measure for happiness: the warmfuzzy. Newton ran
controlled experiments involving bread puddings from which he established a
relationship between the rate at which his happiness changed and the number
of bread puddings he had consumed. Although the original notes have not
survived to the present day, this very paragraph points to the following result
of Newton's observations:

H ′ = 6p(2− p),

where H ′ represents the rate at which his happiness level is changing (in units
of warmfuzzies per bread pudding), and p is the number of bread puddings
consumed on a given day.

As Newton eats his bread pudding his happiness level will rise as long as H ′

is positive. According to the model, this will be the case as long as 0 < p < 2.
In fact, his happiness will be increasing fastest when p = 1 (at which point it
is increasing at a whopping rate of 6 warmfuzzies per bread pudding!), which
no doubt makes it di�cult not to have a second bread pudding. His happiness
will continue to rise until p = 2, after which H ′ is negative. If he were to keep
on eating bread puddings after having two, his happiness level would begin to
fall toward what he called grumpiness.

So, Newton's brain told him what his gut already knew: He maximizes the
happiness gained from bread pudding consumption by eating exactly two of
them. The natural question, of course, and the one that I dare say motivated
the development of integral calculus, is this: How much happiness does he
actually gain by consuming two bread puddings?

As calculus students know today, the net change in happiness level corre-
sponds to the integral ∫ 2

0

6p(2− p) dp

which evaluates to 8 warmfuzzies.
So it came to pass that in the pursuit of happiness Newton found 8. (As

an aside, some etymologists believe the phrase �No, thanks. I just ate� has its
origin in this saying of Newton's: �No more! I'm up eight!� This may explain
why eight is one of the few numbers that is also a verb, phonetically.)

Leonhard Euler was a second giant of mathematical thought during the
scienti�c revolution. A native of Basle, Switzerland, Euler was born in 1707,
twenty years before Newton's death. He spent much of his working life in St.
Petersburg and Berlin. He generated an immense quantity of fundamental,
ground breaking work in mathematics.

Pertinent to our story, Euler is responsible for many common symbols used
in mathematics to this day, including the symbols for the numbers π and e.
To honor 8, which already had the strongest of symbols (as we shall see in
Section 6), Euler invented a new �eld of mathematics called graph theory.
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Figure 4.1: The seven bridges of Königsberg.

Graph theory was born from the solution to a puzzle that came to Euler's
attention in 1736. In Königsberg (now Kaliningrad, Russia) one found a pic-
turesque scene on the Pregel River: seven bridges joining four di�erent land
masses, as pictured in Figure 4.1. The puzzle that Euler answered was this:
Can one walk in Königbserg in such a way as to traverse each bridge exactly
once, following these rules: (1) you can only access the islands by the bridges;
and (2) there is no backtracking on bridges (once you begin to walk on a bridge
you must cross to the other side). There was no requirement that you end your
walk where you started it. Such a walk, if it exists, is now called an Eulerian
path.

Euler not only solved the puzzle (the answer is �no�), but also, being a math-
ematician, provided a method by which one could very quickly tell whether such
a walk was possible for any number of bridges and any number of land masses.
Thus, graph theory was born and Euler provided its �rst theorem. But why
did Euler choose this particular puzzle with which to launch this new �eld?
Scratching below the surface in a way eerily similar to the work Robert Lang-
don regularly did in The Da Vinci Code, we �nd that his choice was motivated
by the desire to o�er a tribute to the number 8.

8

Figure 4.2: If we had an eighth bridge of Königsberg.

I invite the reader to check that if you were to add an eighth bridge such a
walk becomes possible. Such is the power of 8 that this eighth bridge may be
added anywhere, connecting any two land masses, and wherever it is placed,
an Eulerian path now exists! Here, I've added an eighth bridge randomly to
the scene in Figure 4.2. Check that now a path traversing each bridge exactly
once is possible.

The power and versatility of 8 displayed in the Bridges of Königsberg puzzle
has been captured in song that can still be heard today, ringing in the great
halls of Basle during Octoberfest, as long as you are drinking with this author:

Oh bridges, oh bridges, you puzzle me so
I cross one and cross two, which way do I go
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to traverse each one of them exactly once?
I can't seem to do it, don't think me a dunce!

Oh Pregel, Oh Pregel, I dare not go in!
My love doth, my love doth, �nd it a great sin
to call on her family in �ne clothes sodden
but what choice do I have with bridges seven?

Oh Euler, Oh Euler, I think I've a plan
if you could please plop down just one other span
Plop it down here or there, and you'll hear me cry
�I cross all 8 bridges while keeping me dry!�

Oh Bridge 8, Oh Bridge 8, we drink to you this beer
you'd stretch out to give us a solution clear,
to the puzzle that inspired graph theory great
in an e�ort to celebrate big number 8!

5 Romantic 8

The �rst half of the 19th century is viewed as the Romantic Age in European
music, art, and literature. Artists turned away from the rationalism of the
previous age, and began drawing inspiration from emotional responses to the
natural world and the world of ideas, including the concept of in�nity. Edmond
Burke once wrote[2]: �In�nity has a tendency to �ll the mind with that sort
of delightful horror, which is the most genuine e�ect and truest test of the
sublime.�

Meanwhile, mathematicians turned their attentions to placing much of the
mathematical achievements of the previous centuries on rigorous footing. Set
theory plays an important role in this foundation, and one of the pioneers of
this �eld was Georg Cantor. Born in St. Petersburg in 1845, Cantor was a
highly original mathematician who studied, among other things, the sizes of
sets. 8 found a kindred spirit in Cantor. Together they looked at in�nity and,
to everyone's delightful horror, they proved that it comes in di�erent sizes.

In general, how do we tell whether two sets are the same size? Perhaps we
can count the number of elements in each one and compare the numbers. But
what if we can't count them all? We could try pairing the elements of one set
with the elements of the other to see whether any are left over. For instance,
I know the set of vowels {A,E, I,O, U, Y } and the set of days { Monday, ... ,
Sunday} are di�erent sizes because I cannot pair their elements exactly. Here's
the transcript of one of my early attempts at a pairing:
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MPH: Ok, let's see... A stand over there with Tuesday. Thank you!

Now, E, next to Thursday, please. I, with Monday...

Y : How about O with Saturday?

MPH: Fine by me... thanks. Ok... now, how about U with Friday.

Y : Great!

MPH: Y , I was pointing at U . I want U with Friday.

Y : Right, and now I'm standing next to him.

MPH: No, not you, Y . You, U .

Y : Ohhhhh!

O: What?

Saturday: O is with me.

MPH: Yes, that's what I said.

I: I didn't say anything.

Y : I, must you refer to yourself in the third person?

I: Huh?

MPH: Ok, I want U with Friday. Y stand with Sunday.

Sunday: Why not? I'm a friendly day. What did I do?

I: I didn't do anything!

Y : There goes I all third person again...

MPH: Quiet, please! Anyone leftover? Dang! Wednesday.

Okay, let's try this one more time...
No matter how things get paired, one day will be left out. The set of days

is larger than the set of vowels. I have also learned that it is easier to attempt
a pairing by making a chart or table. The attempt recorded above can be
summarized in this way:

vowel A E I O U Y

day Tue Thu Mon Sat Fri Sun

With this view of comparing sizes, we may turn to in�nite sets. For in-
stance, we may compare the set of natural numbers N = {1, 2, 3, . . .} with the
set of integers Z = {. . . − 3,−2,−1, 0, 1, 2, 3, . . .}. Now, Z may appear to be
much larger because everything that is in N is also in Z, and still Z contains
other numbers such as 0 and all the negative integers! In fact, the sets have the
same size because we can pair the elements of N precisely with the elements of
Z so that neither set has any elements left over. The table below suggests how
to do this:

N 1 2 3 4 5 6 7 ...

Z 0 1 -1 2 -2 3 -3 ...

Convinced? If not, maybe this will help. We can describe the pairing by
this rule: If the natural number n is even, it gets paired with the integer n/2,
and if n is odd it gets paired with the integer (1 − n)/2. Using these rules
one can check that each element of N gets paired with one element of Z and

each element of Z gets paired with one element of N. So N and Z are the same
size. Intuition that we have developed about the sizes of �nite sets just doesn't
apply to in�nite sets.

Here's an even more astonishing example. A little known French mathe-
matician named Michel Vivelatrois, a product of this author's artistic license,
built an in�nite two-dimensional array of 3s as suggested below.
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1 2 3 ...

1 3 3 3 ...

2 3 3 3 ...

3 3 3 3 ...
...

...
...

...
...

The array has one row for each natural number and one column for each
natural number, and every entry in the array is 3. (If I may be frank, Vive-
latrois exhibited an unhealthy number obsession.) To his dismay, Vivelatrois
discovered that the total number of 3s in this array is no larger than the set
N. Can you �nd a way to pair up each 3 in this array with its own natural
number? There is a way!

In light of such examples, numbers began gathering in co�ee houses around
central Europe to listen to Chopin Mazurkas and to try assembling themselves
into sets larger than N. Alas, they all su�ered the fate of Vivelatrois' array of
3s.

Enter Cantor and 8. Suppose we build a sequence consisting of just 8s and
Gs, such as this one:

8, 8, G, 8, G,G, 8, . . .

There is no rhyme or reason to this sequence. We just require that each term
is an 8 or a G, and that the sequence does not terminate. Two such �Great 8�
sequences are di�erent as long as they disagree in at least one spot. Now, let S
denote the set of all possible Great 8 sequences. Cantor proved that the set S
is larger than N using a technique that is now called Cantor's diagonalization
argument. Here's how it works.

Assume initially that S and N have the same size. This means the elements
of the two sets can be precisely paired

with one another. Suppose such a pairing is given in the form of a table,
as suggested below (ignore the bold values for now).

N S
1 8, 8, 8, 8, 8, . . .

2 8, 8, G, 8, G,. . .

3 G, 8, G, 8, G,. . .

4 8, 8, G, G, G, . . .

5 8, G, G, G, 8, . . .
...

...

Cantor argued that this couldn't possibly be a complete pairing of the two
sets by demonstrating that there must be some element in S that is not in
this list. We construct a Great 8 sequence, let's call it x, by �rst considering
the (bold) �diagonal�entries in this listing. These diagonal entries themselves
determine a Great 8 sequence (which begins 8, 8, G, G, 8, . . .).

We then form the sequence x by assigning at each position the opposite
value to the one at the corresponding position of the diagonal sequence. Thus,
the sequence x begins G, G, 8, 8, G, ... . This Great 8 sequence will be di�erent
from every sequence in the list. Indeed, x is di�erent than the �rst sequence in
the list because their �rst entries will be di�erent, and x is di�erent from the
second sequence in the list because their second entries di�er. In particular, x
will di�er from the nth sequence in the list because their nth terms will di�er.
We are forced to conclude that no pairing of N and S is possible.
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What this means, as Cantor realized, is that while both sets are in�nite, the
set S is larger. Thus did 8 and Cantor introduce us to di�erent sizes of in�nity,
prompting David Hilbert to write in his 1926 paper Uber das Unendliche [3],
�Aus dem Paradies, das Cantor uns gescha�en, soll uns niemand vertreiben
konnen.� My translation reads: �No one shall expel us from the paradise that
Cantor and 8 have created.�

6 Modern 8

The 19th century also saw the development of topology, a rich �eld of study
to this day. Topology may be described as the study of those features of
an object that remain unchanged when the object is stretched, shrunk, or
otherwise continuously changed. The topological viewpoint has shed new light
on the greatness of 8, just as it has dealt a blow to the individuality of several
numbers.

A central question in topology is whether two given objects are topologically
equivalent. That is, can one object be continuously changed until it looks like
the other? For instance, 6 is topologically equivalent to 9: 6 can be gradually
altered to look like 9 (just stand 6 on its head). It is also true that one, two,
three, �ve and seven have topologically equivalent symbols, an obvious morale
crusher to these numbers in desperate need of some sort of personal identity.
In fact, each of these numbers is topologically equivalent to a straight line
segment. Go ahead and check: with a piece of string you can form each of
these numbers without changing the nearness relationship among the points of
the string (e.g., you don't tie the ends of the string together, or cross it over
itself, or cut it into pieces).

An important topological feature of a space is whether it is connected, and
it is no exaggeration to say that topologists celebrate connected spaces. Sadly,
most integers have disconnected symbols, a signi�cant strike against them. For
instance, -33 has a cumbersome 3 connected components. Of the integers, only
0 through 9 are connected.

But not all connected spaces are alike, and we can investigate this by con-
sidering cut points. A cut point in a connected space is a point whose removal
would make the remaining space disconnected; and a measure of an object's
resolve is how many points (other than endpoints) one can remove without
disconnecting the remaining space.

If you remove any such point from l, 2, 3, 5, or 7, you end up disconnecting
the digit, as suggested in Figure 6.1. With 0, 4, 6, and 9 one can �nd a point to
snip that does not disconnect the space, but two snips will always disconnect
these digits. Of the connected integers, 8 alone can survive two snips. Yes, 8
is the most resolute of the integers, topologically.

Figure 6.1: 8's connectivity can survive two snips!

Now let's bump this topology discussion up a dimension. A surface is a
space with the feature that every point in the space has a neighborhood around
it that looks like a little circular patch of a sheet of paper, or a bicycle tube
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patch. A few surfaces are pictured in Figure 6.2: a sphere, a sphere with a
handle (hoppity-hop!), a donut (bike tube!), and what we could call a four-
holed donut (yummy!).

Figure 6.2: Some surfaces.

In the 1860s mathematicians managed to completely classify the compact
and connected surfaces. There are in�nitely many di�erent ones, but we have
a complete list of them. If you ran into a surface in a dark alley, it would be
topologically equivalent to one of the surfaces on this well-known list. In fact,
the (in�nite) family of orientable surfaces may be described as follows: Each
orientable surface is topolocially equivelent to a sphere with some number of
handles attached to it. For instance, the donut is topologically the same as a
sphere with one handle (which looks like the hoppity-hop in Figure 6.2) because
one can be gradually morphed to look like the other. The four-holed donut is
essentially a sphere with four handles.

How are surfaces germane to the story of 8? It turns out each surface can be
given exactly one of three types of geometric structures in which measurements
are the same at every point in the space. The three possibilities for geometry
are Euclidean, elliptic and hyperbolic. We won't dive into the details here,
though they are dear to this author's heart (and are explored in detail in
[4]). Rather, let us be content with stating this remarkable fact: except for

the sphere and the donut, all of the orientable surfaces adhere to hyperbolic

geometry.

This tells us that when you run into that surface in the dark alley, the
probability is 1 that it adheres to hyperbolic geometry. So, if you are a two-
dimensional bug named Bormit, and you assume your universe adheres to
hyperbolic geometry, and you also believe in an Occam's Razor sort of way
that it must be the simplest of all worlds, which world would it be? Inter-
preting �simplest� as �fewest number of handles�, Bormit's world would be the
sphere with two handles. The author has taken the liberty of providing a spare
rendition of this most magni�cent of surfaces in Figure 6.3. Does it look like
an homage to any particular number?

Figure 6.3: The best of all possible worlds for Bormit the 2-D bug.

Of course our universe is not two-dimensional, but appears to us as three-
dimensional. Fine, on to three dimensions. If we assume our universe has a
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nice geometric structure attached to it, it would adhere to one of the three
geometries we've mentioned. Moreover, Einstein's theory of general relativity
ties the geometry of the universe to how much mass and energy is in it.

A little notation might be helpful. It turns out that from Einstein's �eld
equations, the mass-energy density of the universe, ρ, is related to its curvature
k by the following equation, called the Friedmann Equation,

H2 = 8G
π

3
ρ− k

a2
.

Here, H is the Hubble constant measuring the expansion rate of the universe;
k = −1, 0, or 1 is the curvature constant (k = −1 corresponds to hyperbolic
geometry, k = 0 to Euclidean, and k = +1 to elliptic); G is Newton's gravita-
tional constant; a is a scale factor; and π/3 is practically just 1. Notice, please,
the central role that 8 plays in this fundamental description of the universe on
a global scale.

7 Ubiquitous 8

So, yes, something deeper and perhaps more profound than randomness dic-
tates the frequency with which 8 appears in my classes. But no wonder! And
this pheonomenon is not con�ned to the classroom. The other day my son,
who is 8 more or less, was �ossing his teeth, and I said, �You know, son, the
eighth tooth in each quadrant of an adult's mouth is called a wisdom tooth. 8
is very wise.� He looked at me with what can only be described as a mixture
of love and awe. �Gee, thanks, Dad,� he replied. After a thoughtful pause
he asked, �Dad? What is the smallest integer of the form ab where a and b
are distinct primes?� I tousled his hair paternally as I replied, �Take a wild
guess.�1

Once you notice 8, it is everywhere. My son has discovered this phe-
nomenon, and he recently captured one profound �8 moment� in graphic art
form, reproduced here with his permission.

Figure 7.1: When all other lights go out, 8 can guide you.

We close with a random number of fun facts about 8.

1. Do you follow the sport of number tipping? In the summer of 1969, in
a much-hyped but very short match, 8 wrested the world championship
away from e, a title that 8 holds to this day. The o�cial record (repro-
duced below) makes it clear: as the combatants were tipped, e began to
take on the aspect of a tired �ower while 8 approached the in�nite. It
was a blowout.

1As an addendum to this story, it turns out what he had actually asked was, �Dad? I'm

11. Can I have some privacy?� We had a good chuckle over that mixup later.
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Figure 7.2: 8: Your number tipping champion since 1969.

2. The heart of mathematics, namely the polar curve r = 1 − sin(θ), has
arclength equal to 8 units.

3. Sometimes people ask me, �Does it bother you that 7.99999... = 8?�
To these people I gently point out that this suggests it takes an in�nite
number of 9s and a 7 to make an 8. Meanwhile, 7.888... doesn't equal 9
or even 6. In fact, it equals 71

9 , and I need hardly mention that 7+1 = 8.

4. Blaise Pascal and Pierre de Fermat, fathers of probability theory, had a
view of democracy ahead of their time. On one �ctitious occasion they
asked 50 citizens of Clemont-Ferrand to name their favorite number on a
6-sided die. Fifteen of them replied '4', and the remaining 35 were split
evenly among the remaining �ve options. They had two weighted dice
cast to match the vote: on each die, the probability of rolling a 4 was
15/50, the probability of rolling each of the other numbers was 7/50. The
eager reader can check that with these dice, the most likely sum when
rolling them both is 8. The people have spoken!

5. Consider a seven-segment display for numbers (as on a scoreboard).
Which of the digits 0 through 9 requires the use of all seven bulbs, thereby
proving it to be the brightest and most powerful of the connected digits?
You may check for yourself:

Figure 7.3: 8: The brightest of scoreboard digits.

6. Terry Pratchett, knighted in 2009 by Queen Elizabeth II for his service to
literature and 8, famously explores the power of 8 in his Discworld series,
where the eighth son of the eighth son of an eighth son is a sourcerer.

7. Brook Taylor loved his polynomials, and his tennis. As this story goes,
Taylor preferred a springy tennis ball, one that bounced to 60 percent
of its previous height on any given bounce. One other fact about Taylor
(which he liked to trot out at social gatherings) was that the palm of his
right hand, when his arms rested normally at his sides, was precisely 2
feet above the ground. In Taylor's own words: �Notice that, though a
lampshade be upon my head, if I release my lucky tennis ball from my
right hand which lay relaxed by my side, I can be assured that the total
vertical distance travelled by said ball before it stops bouncing will be
precisely 8 feet.�

8. As a student this author wore 8 on his soccer jersey for Swarthmore
College.

8 Concluding Remarks

Through the ages 8 has inspired minds to achieve great mathematical discover-
ies. We have seen many shrines devoted to 8, across time and continents. 8 is
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present in our anatomy (thumbs aren't �ngers!), and in our animal husbandry.
It shines in the very small, such as in seashells, as well as the very large, such
as the shape of the universe. It manifests itself in chocolate bars, nutritional
calculus, and strolls along river banks. It reaches to the stars, and sends us to
in�nity and beyond. It is great 8.

I invite you, dear reader, to share instances of 8, whether great or small,
with this author. Spread the word!

Cheers,
Mike Hitchman (hey! 8 letters!)
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